当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?
当前回答
对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。
比较Python中提供的示例:
def recsum(x):
if x == 1:
return x
else:
return x + recsum(x - 1)
^递归
def tailrecsum(x, running_total=0):
if x == 0:
return running_total
else:
return tailrecsum(x - 1, running_total + x)
^尾部递归
正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。
然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。
这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。
EDIT
没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO
其他回答
递归意味着函数调用自身。例如:
(define (un-ended name)
(un-ended 'me)
(print "How can I get here?"))
尾部递归是指结束函数的递归:
(define (un-ended name)
(print "hello")
(un-ended 'me))
看,非终结函数(Scheme术语中的过程)做的最后一件事就是调用自己。另一个(更有用的)例子是:
(define (map lst op)
(define (helper done left)
(if (nil? left)
done
(helper (cons (op (car left))
done)
(cdr left))))
(reverse (helper '() lst)))
在helper过程中,如果左边不是nil,最后一件事就是调用自己(AFTER cons something和cdr something)。这基本上就是如何映射列表的。
尾部递归有一个很大的优点,即解释器(或编译器,取决于语言和供应商)可以对其进行优化,并将其转换为相当于while循环的东西。事实上,在Scheme传统中,大多数“for”和“while”循环都是以尾部递归的方式完成的(据我所知,没有for和while)。
许多人已经在这里解释了递归。我想引用Riccardo Terrell的《.NET中的并发性,并发和并行编程的现代模式》一书中关于递归的一些优点的一些想法:
“函数递归是FP中迭代的自然方式,因为它避免状态突变。在每次迭代期间,都会传递一个新值而不是被更新(变异)。在里面此外,可以编写递归函数,使您的程序更加模块化,并引入了开发机会并行化。"
以下是同一本书中关于尾部递归的一些有趣注释:
尾部调用递归是一种转换规则递归的技术函数转换为可处理大型输入的优化版本没有任何风险和副作用。注:尾部调用作为优化的主要原因是提高数据位置、内存使用率和缓存使用率。通过做尾巴调用时,被调用者使用与调用者相同的堆栈空间。这减少了记忆压力。它略微改善了缓存,因为存储器被后续调用方重用,并且可以留在缓存中,而不是驱逐旧的缓存线,为新的缓存腾出空间线
术语文件对尾部递归的定义有这样的说法:
尾部递归/n/
如果您还没有厌倦它,请参阅尾部递归。
尾部递归函数是一个递归函数,其中递归调用是函数中最后执行的事情。
常规递归函数,我们有堆栈,每次调用递归函数中的递归函数时,都会向调用堆栈添加另一层。在正常递归中空间:O(n)尾递归使空间复杂性从
O(N)=>O(1)
尾部调用优化意味着可以从另一个函数调用函数,而不增加调用堆栈。我们应该在递归解中编写尾部递归。但某些语言实际上不支持其引擎中的尾部递归,该引擎将语言向下编译。自从ecma6以来,规范中就有了尾部递归。但编译js的引擎都没有实现尾部递归。你无法在js中实现O(1),因为编译器本身不知道如何实现这种尾部递归。截至2020年1月1日,Safari是唯一支持尾部呼叫优化的浏览器。Haskell和Java具有尾部递归优化
正则递归阶乘
function Factorial(x) {
//Base case x<=1
if (x <= 1) {
return 1;
} else {
// x is waiting for the return value of Factorial(x-1)
// the last thing we do is NOT applying the recursive call
// after recursive call we still have to multiply.
return x * Factorial(x - 1);
}
}
我们的调用堆栈中有4个调用。
Factorial(4); // waiting in the memory for Factorial(3)
4 * Factorial(3); // waiting in the memory for Factorial(2)
4 * (3 * Factorial(2)); // waiting in the memory for Factorial(1)
4 * (3 * (2 * Factorial(1)));
4 * (3 * (2 * 1));
我们正在进行4次Factorial()调用,空间为O(n)这可能会导致堆栈溢出
尾部递归因子
function tailFactorial(x, totalSoFar = 1) {
//Base Case: x===0. In recursion there must be base case. Otherwise they will never stop
if (x === 0) {
return totalSoFar;
} else {
// there is nothing waiting for tailFactorial to complete. we are returning another instance of tailFactorial()
// we are not doing any additional computaion with what we get back from this recursive call
return tailFactorial(x - 1, totalSoFar * x);
}
}
在进行递归调用后,我们不需要记住任何内容
与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。