当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?
当前回答
尾部递归函数是一个递归函数,其中递归调用是函数中最后执行的事情。
常规递归函数,我们有堆栈,每次调用递归函数中的递归函数时,都会向调用堆栈添加另一层。在正常递归中空间:O(n)尾递归使空间复杂性从
O(N)=>O(1)
尾部调用优化意味着可以从另一个函数调用函数,而不增加调用堆栈。我们应该在递归解中编写尾部递归。但某些语言实际上不支持其引擎中的尾部递归,该引擎将语言向下编译。自从ecma6以来,规范中就有了尾部递归。但编译js的引擎都没有实现尾部递归。你无法在js中实现O(1),因为编译器本身不知道如何实现这种尾部递归。截至2020年1月1日,Safari是唯一支持尾部呼叫优化的浏览器。Haskell和Java具有尾部递归优化
正则递归阶乘
function Factorial(x) {
//Base case x<=1
if (x <= 1) {
return 1;
} else {
// x is waiting for the return value of Factorial(x-1)
// the last thing we do is NOT applying the recursive call
// after recursive call we still have to multiply.
return x * Factorial(x - 1);
}
}
我们的调用堆栈中有4个调用。
Factorial(4); // waiting in the memory for Factorial(3)
4 * Factorial(3); // waiting in the memory for Factorial(2)
4 * (3 * Factorial(2)); // waiting in the memory for Factorial(1)
4 * (3 * (2 * Factorial(1)));
4 * (3 * (2 * 1));
我们正在进行4次Factorial()调用,空间为O(n)这可能会导致堆栈溢出
尾部递归因子
function tailFactorial(x, totalSoFar = 1) {
//Base Case: x===0. In recursion there must be base case. Otherwise they will never stop
if (x === 0) {
return totalSoFar;
} else {
// there is nothing waiting for tailFactorial to complete. we are returning another instance of tailFactorial()
// we are not doing any additional computaion with what we get back from this recursive call
return tailFactorial(x - 1, totalSoFar * x);
}
}
在进行递归调用后,我们不需要记住任何内容
其他回答
如果每个递归情况仅由对函数本身的调用组成,并且可能具有不同的参数,则函数是尾部递归的。或者,尾部递归是没有待定工作的递归。注意,这是一个与编程语言无关的概念。
考虑定义如下的函数:
g(a, b, n) = a * b^n
一种可能的尾部递归公式是:
g(a, b, n) | n is zero = a
| n is odd = g(a*b, b, n-1)
| otherwise = g(a, b*b, n/2)
如果您检查g(…)的每一个涉及递归情况的RHS,您会发现整个RHS都是对g(……)的调用,仅此而已。这个定义是尾部递归的。
作为比较,非尾部递归公式可能是:
g'(a, b, n) = a * f(b, n)
f(b, n) | n is zero = 1
| n is odd = f(b, n-1) * b
| otherwise = f(b, n/2) ^ 2
f(…)中的每个递归情况都有一些需要在递归调用之后进行的未决工作。
注意,当我们从“g”到“g”时,我们充分利用了关联性(和交换性)乘法。这并不是偶然的,在大多数需要将递归转换为尾递归的情况下,都会利用这些财产:如果我们想急切地做一些工作,而不是让它等待,我们必须使用关联性之类的东西来证明答案是一样的。
尾部递归调用可以通过向后跳转来实现,而不是使用堆栈进行常规递归调用。注意,检测尾部呼叫或发出向后跳转通常很简单。然而,通常很难重新排列参数,以便向后跳转。由于此优化不是免费的,语言实现可以选择不实现此优化,或者通过使用“tailcall”指令标记递归调用和/或选择更高的优化设置来要求选择加入。
然而,某些语言(例如Scheme)确实需要所有实现来优化尾部递归函数,甚至可能需要所有尾部位置的调用。
在大多数命令式语言中,向后跳转通常被抽象为(while)循环,而尾部递归在优化为向后跳转时,与循环同构。
下面是比较两个函数的快速代码片段。第一种是传统的递归,用于求给定数的阶乘。第二种使用尾部递归。
理解起来非常简单直观。
判断递归函数是否为尾部递归函数的一种简单方法是,它是否在基本情况下返回具体值。这意味着它不会返回1或true或类似的值。它很可能会返回某个方法参数的变体。
另一种方法是判断递归调用是否没有任何加法、算术、修改等。这意味着它只是一个纯递归调用。
public static int factorial(int mynumber) {
if (mynumber == 1) {
return 1;
} else {
return mynumber * factorial(--mynumber);
}
}
public static int tail_factorial(int mynumber, int sofar) {
if (mynumber == 1) {
return sofar;
} else {
return tail_factorial(--mynumber, sofar * mynumber);
}
}
术语文件对尾部递归的定义有这样的说法:
尾部递归/n/
如果您还没有厌倦它,请参阅尾部递归。
为了理解尾部调用递归和非尾部调用递归之间的一些核心区别,我们可以探索这些技术的.NET实现。
这是一篇包含C#、F#和C++\CLI中的一些示例的文章:C#、F#和C++/CLI中的尾部递归冒险。
C#没有针对尾部调用递归进行优化,而F#进行了优化。
原理的差异涉及循环与Lambda演算。C#的设计考虑到了循环,而F#是基于Lambda演算的原理构建的。有关Lambda微积分原理的一本非常好(免费)的书,请参阅Abelson、Sussman和Sussman的《计算机程序的结构和解释》。
关于F#中的尾部调用,有关非常好的介绍性文章,请参阅F#中尾部调用的详细介绍。最后,这里有一篇文章介绍了非尾部递归和尾部调用递归(在F#中)之间的区别:尾部递归与F sharp中的非尾部递归。
如果您想了解C#和F#之间尾部调用递归的一些设计差异,请参阅在C#和F#中生成尾部调用操作码。
如果您非常想知道哪些条件阻止C#编译器执行尾部调用优化,请参阅本文:JIT CLR尾部调用条件。
这是《计算机程序的结构和解释》中关于尾部递归的摘录。
在对比迭代和递归时,我们必须小心不要将递归过程的概念与递归过程。当我们将过程描述为递归时指过程定义所指的句法事实(直接或间接)到程序本身。但当我们将过程描述为遵循一种模式,即线性递归,我们谈论的是过程如何演变,而不是如何编写过程的语法。这似乎令人不安我们将递归过程(如事实iter)称为生成迭代过程。然而,这个过程实际上是迭代的:它的状态被其三个状态变量完全捕获解释器只需要跟踪三个变量执行该过程。过程和程序之间的区别可能是令人困惑的是,大多数通用语言的实现(包括Ada、Pascal和C) 以这样一种方式设计过程消耗的内存量会随着过程调用,迭代。因此,这些语言可以描述迭代仅通过使用专用的“循环构造”来处理例如do、repeat、until、for和while。实施方案不具有此缺陷。它将在恒定空间中执行迭代过程,即使迭代过程由递归过程描述。一具有此属性的实现称为尾部递归。用一个尾部递归实现,可以使用普通过程调用机制,使特殊迭代构造只作为句法糖有用。