当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?
当前回答
如果每个递归情况仅由对函数本身的调用组成,并且可能具有不同的参数,则函数是尾部递归的。或者,尾部递归是没有待定工作的递归。注意,这是一个与编程语言无关的概念。
考虑定义如下的函数:
g(a, b, n) = a * b^n
一种可能的尾部递归公式是:
g(a, b, n) | n is zero = a
| n is odd = g(a*b, b, n-1)
| otherwise = g(a, b*b, n/2)
如果您检查g(…)的每一个涉及递归情况的RHS,您会发现整个RHS都是对g(……)的调用,仅此而已。这个定义是尾部递归的。
作为比较,非尾部递归公式可能是:
g'(a, b, n) = a * f(b, n)
f(b, n) | n is zero = 1
| n is odd = f(b, n-1) * b
| otherwise = f(b, n/2) ^ 2
f(…)中的每个递归情况都有一些需要在递归调用之后进行的未决工作。
注意,当我们从“g”到“g”时,我们充分利用了关联性(和交换性)乘法。这并不是偶然的,在大多数需要将递归转换为尾递归的情况下,都会利用这些财产:如果我们想急切地做一些工作,而不是让它等待,我们必须使用关联性之类的东西来证明答案是一样的。
尾部递归调用可以通过向后跳转来实现,而不是使用堆栈进行常规递归调用。注意,检测尾部呼叫或发出向后跳转通常很简单。然而,通常很难重新排列参数,以便向后跳转。由于此优化不是免费的,语言实现可以选择不实现此优化,或者通过使用“tailcall”指令标记递归调用和/或选择更高的优化设置来要求选择加入。
然而,某些语言(例如Scheme)确实需要所有实现来优化尾部递归函数,甚至可能需要所有尾部位置的调用。
在大多数命令式语言中,向后跳转通常被抽象为(while)循环,而尾部递归在优化为向后跳转时,与循环同构。
其他回答
与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。
这里是前面提到的tailrecsum函数的Perl 5版本。
sub tail_rec_sum($;$){
my( $x,$running_total ) = (@_,0);
return $running_total unless $x;
@_ = ($x-1,$running_total+$x);
goto &tail_rec_sum; # throw away current stack frame
}
在Java中,以下是斐波那契函数的一个可能的尾部递归实现:
public int tailRecursive(final int n) {
if (n <= 2)
return 1;
return tailRecursiveAux(n, 1, 1);
}
private int tailRecursiveAux(int n, int iter, int acc) {
if (iter == n)
return acc;
return tailRecursiveAux(n, ++iter, acc + iter);
}
与标准递归实现形成对比:
public int recursive(final int n) {
if (n <= 2)
return 1;
return recursive(n - 1) + recursive(n - 2);
}
对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。
比较Python中提供的示例:
def recsum(x):
if x == 1:
return x
else:
return x + recsum(x - 1)
^递归
def tailrecsum(x, running_total=0):
if x == 0:
return running_total
else:
return tailrecsum(x - 1, running_total + x)
^尾部递归
正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。
然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。
这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。
EDIT
没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO
尾部递归是函数调用的递归函数自身位于函数的末尾(“尾部”),其中没有计算在递归调用返回后完成。许多编译器优化以将递归调用更改为尾部递归调用或迭代调用。
考虑计算一个数的阶乘的问题。
一种简单的方法是:
factorial(n):
if n==0 then 1
else n*factorial(n-1)
假设你调用阶乘(4)。递归树为:
factorial(4)
/ \
4 factorial(3)
/ \
3 factorial(2)
/ \
2 factorial(1)
/ \
1 factorial(0)
\
1
上述情况下的最大递归深度为O(n)。
但是,请考虑以下示例:
factAux(m,n):
if n==0 then m;
else factAux(m*n,n-1);
factTail(n):
return factAux(1,n);
factTail(4)的递归树为:
factTail(4)
|
factAux(1,4)
|
factAux(4,3)
|
factAux(12,2)
|
factAux(24,1)
|
factAux(24,0)
|
24
这里,最大递归深度是O(n),但没有一个调用向堆栈添加任何额外变量。因此编译器可以取消堆栈。