当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


当前回答

下面是一个使用尾部递归进行阶乘的常见Lisp示例。由于无堆栈的性质,人们可以进行疯狂的大型阶乘计算。。。

(defun ! (n &optional (product 1))
    (if (zerop n) product
        (! (1- n) (* product n))))

然后为了好玩,你可以尝试(格式化nil“~R”(!25))

其他回答

简而言之,尾部递归将递归调用作为函数中的最后一条语句,这样就不必等待递归调用。

所以这是一个尾部递归,即N(x-1,p*x)是函数中的最后一个语句,编译器聪明地发现它可以优化为for循环(阶乘)。第二个参数p携带中间乘积值。

function N(x, p) {
   return x == 1 ? p : N(x - 1, p * x);
}

这是编写上述阶乘函数的非尾部递归方式(尽管某些C++编译器可能无论如何都能优化它)。

function N(x) {
   return x == 1 ? 1 : x * N(x - 1);
}

但这不是:

function F(x) {
  if (x == 1) return 0;
  if (x == 2) return 1;
  return F(x - 1) + F(x - 2);
}

我确实写了一篇题为“理解尾部递归——Visual Studio C++——汇编视图”的长文

尾部递归是指递归算法中最后一条逻辑指令中的最后一个递归调用。

通常在递归中,您有一个基本情况,即停止递归调用并开始弹出调用堆栈。使用一个经典的例子,尽管比Lisp更具C语言,阶乘函数说明了尾部递归。递归调用在检查基本情况条件后发生。

factorial(x, fac=1) {
  if (x == 1)
     return fac;
   else
     return factorial(x-1, x*fac);
}

对阶乘的初始调用将是阶乘(n),其中fac=1(默认值),n是要计算阶乘的数字。

对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。

比较Python中提供的示例:

def recsum(x):
 if x == 1:
  return x
 else:
  return x + recsum(x - 1)

^递归

def tailrecsum(x, running_total=0):
  if x == 0:
    return running_total
  else:
    return tailrecsum(x - 1, running_total + x)

^尾部递归

正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。

然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。

这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。

EDIT

没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO

术语文件对尾部递归的定义有这样的说法:

尾部递归/n/

如果您还没有厌倦它,请参阅尾部递归。

尾部递归函数是一个递归函数,其中递归调用是函数中最后执行的事情。

常规递归函数,我们有堆栈,每次调用递归函数中的递归函数时,都会向调用堆栈添加另一层。在正常递归中空间:O(n)尾递归使空间复杂性从

O(N)=>O(1)

尾部调用优化意味着可以从另一个函数调用函数,而不增加调用堆栈。我们应该在递归解中编写尾部递归。但某些语言实际上不支持其引擎中的尾部递归,该引擎将语言向下编译。自从ecma6以来,规范中就有了尾部递归。但编译js的引擎都没有实现尾部递归。你无法在js中实现O(1),因为编译器本身不知道如何实现这种尾部递归。截至2020年1月1日,Safari是唯一支持尾部呼叫优化的浏览器。Haskell和Java具有尾部递归优化

正则递归阶乘

function Factorial(x) {
  //Base case x<=1
  if (x <= 1) {
    return 1;
  } else {
    // x is waiting for the return value of Factorial(x-1)
    // the last thing we do is NOT applying the recursive call
    // after recursive call we still have to multiply.
    return x * Factorial(x - 1);
  }
}

我们的调用堆栈中有4个调用。

Factorial(4); // waiting in the memory for Factorial(3)
4 * Factorial(3); //  waiting in the memory for Factorial(2)
4 * (3 * Factorial(2)); //  waiting in the memory for Factorial(1)
4 * (3 * (2 * Factorial(1)));
4 * (3 * (2 * 1));

我们正在进行4次Factorial()调用,空间为O(n)这可能会导致堆栈溢出

尾部递归因子

function tailFactorial(x, totalSoFar = 1) {
  //Base Case: x===0. In recursion there must be base case. Otherwise they will never stop
  if (x === 0) {
    return totalSoFar;
  } else {
    // there is nothing waiting for tailFactorial to complete. we are returning another instance of tailFactorial()
    // we are not doing any additional computaion with what we get back from this recursive call
    return tailFactorial(x - 1, totalSoFar * x);
  }
}

在进行递归调用后,我们不需要记住任何内容