当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


当前回答

简而言之,尾部递归将递归调用作为函数中的最后一条语句,这样就不必等待递归调用。

所以这是一个尾部递归,即N(x-1,p*x)是函数中的最后一个语句,编译器聪明地发现它可以优化为for循环(阶乘)。第二个参数p携带中间乘积值。

function N(x, p) {
   return x == 1 ? p : N(x - 1, p * x);
}

这是编写上述阶乘函数的非尾部递归方式(尽管某些C++编译器可能无论如何都能优化它)。

function N(x) {
   return x == 1 ? 1 : x * N(x - 1);
}

但这不是:

function F(x) {
  if (x == 1) return 0;
  if (x == 2) return 1;
  return F(x - 1) + F(x - 2);
}

我确实写了一篇题为“理解尾部递归——Visual Studio C++——汇编视图”的长文

其他回答

我不是Lisp程序员,但我认为这会有所帮助。

基本上,这是一种编程风格,递归调用是最后一件事。

许多人已经在这里解释了递归。我想引用Riccardo Terrell的《.NET中的并发性,并发和并行编程的现代模式》一书中关于递归的一些优点的一些想法:

“函数递归是FP中迭代的自然方式,因为它避免状态突变。在每次迭代期间,都会传递一个新值而不是被更新(变异)。在里面此外,可以编写递归函数,使您的程序更加模块化,并引入了开发机会并行化。"

以下是同一本书中关于尾部递归的一些有趣注释:

尾部调用递归是一种转换规则递归的技术函数转换为可处理大型输入的优化版本没有任何风险和副作用。注:尾部调用作为优化的主要原因是提高数据位置、内存使用率和缓存使用率。通过做尾巴调用时,被调用者使用与调用者相同的堆栈空间。这减少了记忆压力。它略微改善了缓存,因为存储器被后续调用方重用,并且可以留在缓存中,而不是驱逐旧的缓存线,为新的缓存腾出空间线

尾部递归函数是一个递归函数,其中递归调用是函数中最后执行的事情。

常规递归函数,我们有堆栈,每次调用递归函数中的递归函数时,都会向调用堆栈添加另一层。在正常递归中空间:O(n)尾递归使空间复杂性从

O(N)=>O(1)

尾部调用优化意味着可以从另一个函数调用函数,而不增加调用堆栈。我们应该在递归解中编写尾部递归。但某些语言实际上不支持其引擎中的尾部递归,该引擎将语言向下编译。自从ecma6以来,规范中就有了尾部递归。但编译js的引擎都没有实现尾部递归。你无法在js中实现O(1),因为编译器本身不知道如何实现这种尾部递归。截至2020年1月1日,Safari是唯一支持尾部呼叫优化的浏览器。Haskell和Java具有尾部递归优化

正则递归阶乘

function Factorial(x) {
  //Base case x<=1
  if (x <= 1) {
    return 1;
  } else {
    // x is waiting for the return value of Factorial(x-1)
    // the last thing we do is NOT applying the recursive call
    // after recursive call we still have to multiply.
    return x * Factorial(x - 1);
  }
}

我们的调用堆栈中有4个调用。

Factorial(4); // waiting in the memory for Factorial(3)
4 * Factorial(3); //  waiting in the memory for Factorial(2)
4 * (3 * Factorial(2)); //  waiting in the memory for Factorial(1)
4 * (3 * (2 * Factorial(1)));
4 * (3 * (2 * 1));

我们正在进行4次Factorial()调用,空间为O(n)这可能会导致堆栈溢出

尾部递归因子

function tailFactorial(x, totalSoFar = 1) {
  //Base Case: x===0. In recursion there must be base case. Otherwise they will never stop
  if (x === 0) {
    return totalSoFar;
  } else {
    // there is nothing waiting for tailFactorial to complete. we are returning another instance of tailFactorial()
    // we are not doing any additional computaion with what we get back from this recursive call
    return tailFactorial(x - 1, totalSoFar * x);
  }
}

在进行递归调用后,我们不需要记住任何内容

重要的一点是尾部递归本质上等同于循环。这不仅仅是一个编译器优化的问题,而是一个关于表现力的基本事实。这是双向的:你可以采取任何形式的循环

while(E) { S }; return Q

其中E和Q是表达式,S是语句序列,并将其转换为尾部递归函数

f() = if E then { S; return f() } else { return Q }

当然,必须定义E、S和Q来计算一些变量的有趣值。例如,循环函数

sum(n) {
  int i = 1, k = 0;
  while( i <= n ) {
    k += i;
    ++i;
  }
  return k;
}

等效于尾部递归函数

sum_aux(n,i,k) {
  if( i <= n ) {
    return sum_aux(n,i+1,k+i);
  } else {
    return k;
  }
}

sum(n) {
  return sum_aux(n,1,0);
}

(用参数较少的函数“包装”尾部递归函数是一种常见的函数习惯用法。)

尾部递归是函数调用的递归函数自身位于函数的末尾(“尾部”),其中没有计算在递归调用返回后完成。许多编译器优化以将递归调用更改为尾部递归调用或迭代调用。

考虑计算一个数的阶乘的问题。

一种简单的方法是:

  factorial(n):

    if n==0 then 1

    else n*factorial(n-1)

假设你调用阶乘(4)。递归树为:

       factorial(4)
       /        \
      4      factorial(3)
     /             \
    3          factorial(2)
   /                  \
  2                factorial(1)
 /                       \
1                       factorial(0)
                            \
                             1    

上述情况下的最大递归深度为O(n)。

但是,请考虑以下示例:

factAux(m,n):
if n==0  then m;
else     factAux(m*n,n-1);

factTail(n):
   return factAux(1,n);

factTail(4)的递归树为:

factTail(4)
   |
factAux(1,4)
   |
factAux(4,3)
   |
factAux(12,2)
   |
factAux(24,1)
   |
factAux(24,0)
   |
  24

这里,最大递归深度是O(n),但没有一个调用向堆栈添加任何额外变量。因此编译器可以取消堆栈。