考虑下面四个百分比,用浮点数表示:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。

14 + 48 + 10 + 29 = 101

如果我使用parseInt(),我最终得到了97%。

13 + 47 + 9 + 28 = 97

有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?


编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。

在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。


可能做到这一点的“最佳”方法(引用是因为“最佳”是一个主观术语)是保持你所处位置的连续(非积分)计数,并四舍五入该值。

然后将其与历史记录一起使用,以确定应该使用什么值。例如,使用您给出的值:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
13.626332   13.626332            14             0    14 ( 14 -  0)
47.989636   61.615968            62            14    48 ( 62 - 14)
 9.596008   71.211976            71            62     9 ( 71 - 62)
28.788024  100.000000           100            71    29 (100 - 71)
                                                    ---
                                                    100

在每个阶段,都不需要四舍五入数字本身。相反,将累积值四舍五入,并计算出从上一个基线中达到该值的最佳整数——该基线是前一行的累积值(四舍五入)。

这是可行的,因为您不会在每个阶段都丢失信息,而是更聪明地使用信息。“正确的”四舍五入值在最后一列,你可以看到它们的和是100。

在上面的第三个值中,您可以看到这与盲目舍入每个值之间的区别。虽然9.596008通常会四舍五入到10,但累积的71.211976正确地四舍五入到71 -这意味着只需要9就可以加上之前的基线62。


这也适用于“有问题的”序列,比如三个大约1/3的值,其中一个应该四舍五入:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
33.333333   33.333333            33             0    33 ( 33 -  0)
33.333333   66.666666            67            33    34 ( 67 - 33)
33.333333   99.999999           100            67    33 (100 - 67)
                                                    ---
                                                    100

如果是四舍五入,就没有办法在所有情况下都得到完全相同的结果。

你可以取你拥有的N个百分比的小数部分(在你给出的例子中是4)。

把小数部分相加。在你的例子中,总分为3。

将分数最高的3个数字上排,其余的取底。

(抱歉修改了)


您可以尝试跟踪由于舍入而产生的误差,如果累计误差大于当前数字的小数部分,则再反向舍入。

13.62 -> 14 (+.38)
47.98 -> 48 (+.02 (+.40 total))
 9.59 -> 10 (+.41 (+.81 total))
28.78 -> 28 (round down because .81 > .78)
------------
        100

不确定这是否适用于一般情况,但如果顺序相反,似乎也会有类似的效果:

28.78 -> 29 (+.22)
 9.59 ->  9 (-.37; rounded down because .59 > .22)
47.98 -> 48 (-.35)
13.62 -> 14 (+.03)
------------
        100

我相信在某些情况下,这种方法可能会失效,但任何方法都至少在某种程度上是任意的,因为您基本上是在修改输入数据。


不要把四舍五入的数字相加。你会得到不准确的结果。总数可能会显著偏离,这取决于术语的数量和小数部分的分布。

显示四舍五入的数字,但和实际值。根据你呈现数字的方式不同,实际的方法也会有所不同。这样你就能得到

14 48 10 29 __ 100

不管怎样,都会有差异。在你的例子中,没有办法显示加起来等于100的数字而不以错误的方式“舍入”一个值(最小的错误是将9.596更改为9)

EDIT

你需要在以下选项中做出选择:

项目的准确性 和的准确性(如果你是四舍五入的值) 四舍五入的项目与四舍五入的总和的一致性)

大多数情况下,当处理百分比时,第三种方法是最好的选择,因为当总数等于101%时比当单个项目的总数不等于100时更明显,并且您可以保持单个项目的准确性。“舍入”9.596到9在我看来是不准确的。

为了解释这一点,我有时会添加一个脚注,解释各个值是四舍五入的,可能不是100% -任何理解四舍五入的人都应该能够理解这个解释。


只要您不关心对原始十进制数据的依赖,就有许多方法可以做到这一点。

第一种也是最流行的方法是最大余数法

基本上就是:

四舍五入 求sum和100的差值 将差值按小数部分的递减顺序加1

在你的例子中,它是这样的:

13.626332%
47.989636%
 9.596008%
28.788024%

如果取整数部分,就得到

13
47
 9
28

加起来是97,再加3。现在,你看小数点部分

.626332%
.989636%
.596008%
.788024%

取最大的,直到总数达到100。所以你会得到:

14
48
 9
29

或者,您可以简单地选择显示一个小数位而不是整数值。所以数字是48.3和23.9等等。这会使方差从100下降很多。


这是一个银行家四舍五入的例子,又名“四舍五入半偶数”。BigDecimal支持。它的目的是确保四舍五入平衡,即不偏袒银行或客户。


我不确定你需要什么程度的精度,但我要做的就是简单地把前n个数字加1,n是小数总和的上界。在这种情况下,它是3,所以我将给前3项加1,然后将其余的取整。当然,这并不是非常准确,有些数字可能会四舍五入或在不应该的时候,但它工作得很好,总是会得到100%。

因此[13.626332,47.989636,9.596008,28.788024]将是[14,48,10,28],因为Math.ceil(.626332+.989636+.596008+.788024) == 3

function evenRound( arr ) {
  var decimal = -~arr.map(function( a ){ return a % 1 })
    .reduce(function( a,b ){ return a + b }); // Ceil of total sum of decimals
  for ( var i = 0; i < decimal; ++i ) {
    arr[ i ] = ++arr[ i ]; // compensate error by adding 1 the the first n items
  }
  return arr.map(function( a ){ return ~~a }); // floor all other numbers
}

var nums = evenRound( [ 13.626332, 47.989636, 9.596008, 28.788024 ] );
var total = nums.reduce(function( a,b ){ return a + b }); //=> 100

你总是可以告诉用户这些数字是四舍五入的,可能不是非常准确……


我曾经写过一个un舍入工具,来找到一组数字的最小扰动来匹配一个目标。这是一个不同的问题,但理论上可以在这里使用类似的想法。在这种情况下,我们有一系列的选择。

因此,对于第一个元素,我们可以四舍五入到14,也可以四舍五入到13。这样做的代价(在二进制整数编程的意义上)对于向上舍入比向下舍入要小,因为向下舍入需要我们将该值移动更大的距离。同样,我们可以把每个数字四舍五入,所以我们总共有16个选择。

  13.626332
  47.989636
   9.596008
+ 28.788024
-----------
 100.000000

我通常会在MATLAB中使用bintprog(一种二进制整数编程工具)解决一般问题,但这里只有几个选项需要测试,所以用简单的循环就可以很容易地测试出16个选项中的每一个。例如,假设我们将这个集合四舍五入为:

 Original      Rounded   Absolute error
   13.626           13          0.62633
    47.99           48          0.01036
    9.596           10          0.40399
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.25266

总绝对误差为1.25266。它可以通过以下替代舍入来略微减少:

 Original      Rounded   Absolute error
   13.626           14          0.37367
    47.99           48          0.01036
    9.596            9          0.59601
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.19202

事实上,这就是绝对误差的最优解。当然,如果有20项,搜索空间的大小将是2^20 = 1048576。对于30或40个术语,这个空间将是相当大的。在这种情况下,您将需要使用能够有效搜索空间的工具,可能使用分支和绑定方案。


我认为以下几点可以达到你的目的

function func( orig, target ) {

    var i = orig.length, j = 0, total = 0, change, newVals = [], next, factor1, factor2, len = orig.length, marginOfErrors = [];

    // map original values to new array
    while( i-- ) {
        total += newVals[i] = Math.round( orig[i] );
    }

    change = total < target ? 1 : -1;

    while( total !== target ) {

        // Iterate through values and select the one that once changed will introduce
        // the least margin of error in terms of itself. e.g. Incrementing 10 by 1
        // would mean an error of 10% in relation to the value itself.
        for( i = 0; i < len; i++ ) {

            next = i === len - 1 ? 0 : i + 1;

            factor2 = errorFactor( orig[next], newVals[next] + change );
            factor1 = errorFactor( orig[i], newVals[i] + change );

            if(  factor1 > factor2 ) {
                j = next; 
            }
        }

        newVals[j] += change;
        total += change;
    }


    for( i = 0; i < len; i++ ) { marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i]; }

    // Math.round() causes some problems as it is difficult to know at the beginning
    // whether numbers should have been rounded up or down to reduce total margin of error. 
    // This section of code increments and decrements values by 1 to find the number
    // combination with least margin of error.
    for( i = 0; i < len; i++ ) {
        for( j = 0; j < len; j++ ) {
            if( j === i ) continue;

            var roundUpFactor = errorFactor( orig[i], newVals[i] + 1)  + errorFactor( orig[j], newVals[j] - 1 );
            var roundDownFactor = errorFactor( orig[i], newVals[i] - 1) + errorFactor( orig[j], newVals[j] + 1 );
            var sumMargin = marginOfErrors[i] + marginOfErrors[j];

            if( roundUpFactor < sumMargin) { 
                newVals[i] = newVals[i] + 1;
                newVals[j] = newVals[j] - 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

            if( roundDownFactor < sumMargin ) { 
                newVals[i] = newVals[i] - 1;
                newVals[j] = newVals[j] + 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

        }
    }

    function errorFactor( oldNum, newNum ) {
        return Math.abs( oldNum - newNum ) / oldNum;
    }

    return newVals;
}


func([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100); // => [16, 16, 17, 17, 17, 17]
func([33.333, 33.333, 33.333], 100); // => [34, 33, 33]
func([33.3, 33.3, 33.3, 0.1], 100); // => [34, 33, 33, 0] 
func([13.25, 47.25, 11.25, 28.25], 100 ); // => [13, 48, 11, 28]
func( [25.5, 25.5, 25.5, 23.5], 100 ); // => [25, 25, 26, 24]

最后一件事,我使用问题中最初给出的数字运行函数,与期望的输出进行比较

func([13.626332, 47.989636, 9.596008, 28.788024], 100); // => [48, 29, 13, 10]

这与问题想要的不同=>[48,29,14,9]。我无法理解这一点,直到我看了总误差范围

-------------------------------------------------
| original  | question | % diff | mine | % diff |
-------------------------------------------------
| 13.626332 | 14       | 2.74%  | 13   | 4.5%   |
| 47.989636 | 48       | 0.02%  | 48   | 0.02%  |
| 9.596008  | 9        | 6.2%   | 10   | 4.2%   |
| 28.788024 | 29       | 0.7%   | 29   | 0.7%   |
-------------------------------------------------
| Totals    | 100      | 9.66%  | 100  | 9.43%  |
-------------------------------------------------

从本质上讲,我的函数的结果实际上引入了最少的误差。

小提琴在这里


因为这里没有一个答案似乎能正确解决这个问题,下面是我使用下划线的半模糊版本:

function foo(l, target) {
    var off = target - _.reduce(l, function(acc, x) { return acc + Math.round(x) }, 0);
    return _.chain(l).
            sortBy(function(x) { return Math.round(x) - x }).
            map(function(x, i) { return Math.round(x) + (off > i) - (i >= (l.length + off)) }).
            value();
}

foo([13.626332, 47.989636, 9.596008, 28.788024], 100) // => [48, 29, 14, 9]
foo([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100) // => [17, 17, 17, 17, 16, 16]
foo([33.333, 33.333, 33.333], 100) // => [34, 33, 33]
foo([33.3, 33.3, 33.3, 0.1], 100) // => [34, 33, 33, 0]

我写了一个c#版本的舍入帮助器,算法和Varun Vohra的答案一样,希望对你有帮助。

public static List<decimal> GetPerfectRounding(List<decimal> original,
    decimal forceSum, int decimals)
{
    var rounded = original.Select(x => Math.Round(x, decimals)).ToList();
    Debug.Assert(Math.Round(forceSum, decimals) == forceSum);
    var delta = forceSum - rounded.Sum();
    if (delta == 0) return rounded;
    var deltaUnit = Convert.ToDecimal(Math.Pow(0.1, decimals)) * Math.Sign(delta);

    List<int> applyDeltaSequence; 
    if (delta < 0)
    {
        applyDeltaSequence = original
            .Zip(Enumerable.Range(0, int.MaxValue), (x, index) => new { x, index })
            .OrderBy(a => original[a.index] - rounded[a.index])
            .ThenByDescending(a => a.index)
            .Select(a => a.index).ToList();
    }
    else
    {
        applyDeltaSequence = original
            .Zip(Enumerable.Range(0, int.MaxValue), (x, index) => new { x, index })
            .OrderByDescending(a => original[a.index] - rounded[a.index])
            .Select(a => a.index).ToList();
    }

    Enumerable.Repeat(applyDeltaSequence, int.MaxValue)
        .SelectMany(x => x)
        .Take(Convert.ToInt32(delta/deltaUnit))
        .ForEach(index => rounded[index] += deltaUnit);

    return rounded;
}

通过以下单元测试:

[TestMethod]
public void TestPerfectRounding()
{
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.333m, 3.334m, 3.333m}, 10, 2),
        new List<decimal> {3.33m, 3.34m, 3.33m});

    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.33m, 3.34m, 3.33m}, 10, 1),
        new List<decimal> {3.3m, 3.4m, 3.3m});

    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> {3.333m, 3.334m, 3.333m}, 10, 1),
        new List<decimal> {3.3m, 3.4m, 3.3m});


    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 13.626332m, 47.989636m, 9.596008m, 28.788024m }, 100, 0),
        new List<decimal> {14, 48, 9, 29});
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 16.666m, 16.666m, 16.666m, 16.666m, 16.666m, 16.666m }, 100, 0),
        new List<decimal> { 17, 17, 17, 17, 16, 16 });
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 33.333m, 33.333m, 33.333m }, 100, 0),
        new List<decimal> { 34, 33, 33 });
    CollectionAssert.AreEqual(Utils.GetPerfectRounding(
        new List<decimal> { 33.3m, 33.3m, 33.3m, 0.1m }, 100, 0),
        new List<decimal> { 34, 33, 33, 0 });
}

舍入的目标是产生最少的错误。当您对单个值进行舍入时,这个过程简单而直接,大多数人都很容易理解。当你同时四舍五入多个数字时,这个过程变得更加棘手——你必须定义如何组合错误,即必须最小化的错误。

Varun Vohra的答案将绝对误差的总和最小化,而且实现起来非常简单。然而,有一些边缘情况它不能处理-舍入24.25,23.25,27.25,25.25的结果应该是什么?其中一个需要被围捕,而不是减少。你可能会任意选择列表中的第一个或最后一个。

也许用相对误差比绝对误差更好。将23.25四舍五入到24会使它变化3.2%,而将27.25四舍五入到28只会使它变化2.8%。现在有一个明显的赢家。

我们还可以做进一步的调整。一种常见的技术是对每个错误进行平方运算,这样大错误的计数就不成比例地多于小错误。我还会使用非线性除数来得到相对误差——1%的误差比99%的误差重要99倍,这似乎是不对的。在下面的代码中,我使用了平方根。

完整算法如下:

将这些百分比四舍五入后相加,再减去100。这将告诉您这些百分比中有多少必须四舍五入。 为每个百分比生成两个错误分数,一个是四舍五入,另一个是四舍五入。取两者之差。 对上面产生的误差差异进行排序。 对于需要四舍五入的百分比数,从已排序的列表中选取一项,并将四舍五入后的百分比增加1。

您仍然可能有多个具有相同错误和的组合,例如33.3333333,33.3333333,33.3333333。这是不可避免的,结果完全是任意的。下面给出的代码倾向于四舍五入左边的值。

在Python中把它们放在一起是这样的。

from math import isclose, sqrt

def error_gen(actual, rounded):
    divisor = sqrt(1.0 if actual < 1.0 else actual)
    return abs(rounded - actual) ** 2 / divisor

def round_to_100(percents):
    if not isclose(sum(percents), 100):
        raise ValueError
    n = len(percents)
    rounded = [int(x) for x in percents]
    up_count = 100 - sum(rounded)
    errors = [(error_gen(percents[i], rounded[i] + 1) - error_gen(percents[i], rounded[i]), i) for i in range(n)]
    rank = sorted(errors)
    for i in range(up_count):
        rounded[rank[i][1]] += 1
    return rounded

>>> round_to_100([13.626332, 47.989636, 9.596008, 28.788024])
[14, 48, 9, 29]
>>> round_to_100([33.3333333, 33.3333333, 33.3333333])
[34, 33, 33]
>>> round_to_100([24.25, 23.25, 27.25, 25.25])
[24, 23, 28, 25]
>>> round_to_100([1.25, 2.25, 3.25, 4.25, 89.0])
[1, 2, 3, 4, 90]

正如您在最后一个示例中看到的,该算法仍然能够提供非直观的结果。尽管89.0不需要四舍五入,但是列表中的一个值需要四舍五入;相对误差最小的结果是将较大的值舍入,而不是较小的可选值。

这个答案最初主张遍历所有可能的向上舍入/向下舍入组合,但正如评论中指出的那样,更简单的方法效果更好。算法和代码反映了这种简化。


如果你真的必须四舍五入,这里已经有了很好的建议(最大余数,最小相对误差,等等)。

也有一个很好的理由不四舍五入(你至少会得到一个“看起来更好”但“错误”的数字),以及如何解决这个问题(警告你的读者),这就是我所做的。

让我加上“错误”的数字部分。

假设你有三个事件/实体/…用一些百分比来近似:

DAY 1
who |  real | app
----|-------|------
  A | 33.34 |  34
  B | 33.33 |  33
  C | 33.33 |  33

稍后,值略有变化,为

DAY 2
who |  real | app
----|-------|------
  A | 33.35 |  33
  B | 33.36 |  34
  C | 33.29 |  33

第一个表有前面提到的“错误”数字的问题:33.34更接近33而不是34。

但现在误差更大了。与第2天和第1天相比,A的实际百分比值增加了0.01%,但近似值显示下降了1%。

这是一个定性错误,可能比最初的定量错误更严重。

你可以为整个集合设计一个近似值,但是,你可能必须在第一天发布数据,因此你不知道第二天的情况。所以,除非你真的,真的,必须近似,否则最好不要。


检查如果这是有效的或不就我的测试用例,我能够得到这个工作。

假设number是k;

按降序排序百分比。 从降序遍历每个百分比。 计算k的百分比第一个百分比采取数学。输出的天花板。 下一个k = k-1 遍历直到所有百分比被消耗。


我已经实现了Varun Vohra的答案在这里的列表和字典的方法。

import math
import numbers
import operator
import itertools


def round_list_percentages(number_list):
    """
    Takes a list where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    if not all(isinstance(i, numbers.Number) for i in number_list):
        raise ValueError('All values of the list must be a number')

    # Generate a key for each value
    key_generator = itertools.count()
    value_dict = {next(key_generator): value for value in number_list}
    return round_dictionary_percentages(value_dict).values()


def round_dictionary_percentages(dictionary):
    """
    Takes a dictionary where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    # Only allow numbers
    if not all(isinstance(i, numbers.Number) for i in dictionary.values()):
        raise ValueError('All values of the dictionary must be a number')
    # Make sure the sum is close enough to 100
    # Round value_sum to 2 decimals to avoid floating point representation errors
    value_sum = round(sum(dictionary.values()), 2)
    if not value_sum == 100:
        raise ValueError('The sum of the values must be 100')

    # Initial floored results
    # Does not add up to 100, so we need to add something
    result = {key: int(math.floor(value)) for key, value in dictionary.items()}

    # Remainders for each key
    result_remainders = {key: value % 1 for key, value in dictionary.items()}
    # Keys sorted by remainder (biggest first)
    sorted_keys = [key for key, value in sorted(result_remainders.items(), key=operator.itemgetter(1), reverse=True)]

    # Otherwise add missing values up to 100
    # One cycle is enough, since flooring removes a max value of < 1 per item,
    # i.e. this loop should always break before going through the whole list
    for key in sorted_keys:
        if sum(result.values()) == 100:
            break
        result[key] += 1

    # Return
    return result

下面是@varun-vohra答案的一个简单的Python实现:

def apportion_pcts(pcts, total):
    proportions = [total * (pct / 100) for pct in pcts]
    apportions = [math.floor(p) for p in proportions]
    remainder = total - sum(apportions)
    remainders = [(i, p - math.floor(p)) for (i, p) in enumerate(proportions)]
    remainders.sort(key=operator.itemgetter(1), reverse=True)
    for (i, _) in itertools.cycle(remainders):
        if remainder == 0:
            break
        else:
            apportions[i] += 1
            remainder -= 1
    return apportions

你需要math, itertools, operator。


对于那些在熊猫系列中有百分比的人,这里是我的最大余数方法的实现(就像Varun Vohra的答案一样),在那里你甚至可以选择你想要四舍五入的小数。

import numpy as np

def largestRemainderMethod(pd_series, decimals=1):

    floor_series = ((10**decimals * pd_series).astype(np.int)).apply(np.floor)
    diff = 100 * (10**decimals) - floor_series.sum().astype(np.int)
    series_decimals = pd_series - floor_series / (10**decimals)
    series_sorted_by_decimals = series_decimals.sort_values(ascending=False)

    for i in range(0, len(series_sorted_by_decimals)):
        if i < diff:
            series_sorted_by_decimals.iloc[[i]] = 1
        else:
            series_sorted_by_decimals.iloc[[i]] = 0

    out_series = ((floor_series + series_sorted_by_decimals) / (10**decimals)).sort_values(ascending=False)

    return out_series

下面是一个实现了最大余数方法的Ruby宝石: https://github.com/jethroo/lare_round

使用方法:

a =  Array.new(3){ BigDecimal('0.3334') }
# => [#<BigDecimal:887b6c8,'0.3334E0',9(18)>, #<BigDecimal:887b600,'0.3334E0',9(18)>, #<BigDecimal:887b4c0,'0.3334E0',9(18)>]
a = LareRound.round(a,2)
# => [#<BigDecimal:8867330,'0.34E0',9(36)>, #<BigDecimal:8867290,'0.33E0',9(36)>, #<BigDecimal:88671f0,'0.33E0',9(36)>]
a.reduce(:+).to_f
# => 1.0

注意:选择的答案是改变数组的顺序,这不是首选的,在这里我提供了更多不同的变化,以实现相同的结果,并保持数组的顺序

讨论

给定[98.88,.56,.56]你想怎么四舍五入呢?你有四种选择

1-四舍五入,并从其余数字中减去加法,因此结果为[98,1,1]

这可能是一个很好的答案,但是如果我们有[97.5,.5,.5,.5,.5,.5]呢?然后你需要四舍五入到[95,1,1,1,1,1]

你明白是怎么回事了吗?如果你添加更多类似0的数字,你将从剩下的数字中失去更多的值。当你有一个像[40,.5,.5,…, 5]。当你四舍五入时,你可以得到一个1的数组:[1,1,....1)

所以集合不是一个好选择。

2-四舍五入。所以[98.88,.56,.56]变成[98,0,0],那么你比100少2。你忽略任何已经为0的数,然后把它们的差加起来,得到最大的数。所以越大的数字就会得到越多。

3-和前面一样,向下四舍五入,但你根据小数降序排序,根据小数划分差异,所以最大的小数将得到差异。

4-四舍五入,但你把你加到下一个数字上的数加起来。就像一个波一样,你添加的东西会被重定向到数组的末尾。所以[98.88,.56,.56]变成了[99,0,1]

这些都不是理想的,所以要注意您的数据会失去形状。

在这里,我为情况2和3提供了一个代码(因为当你有很多类似零的数字时,情况1是不实际的)。它是现代的Js,不需要任何库来使用

2例

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [ 14, 48, 9, 29 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [ 17, 17, 17, 17, 16, 16 ] 
const v3 = [33.333, 33.333, 33.333] // => [ 34, 33, 33 ]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [ 34, 33, 33, 0 ]
const v5 = [98.88, .56, .56] // =>[ 100, 0, 0 ]
const v6 = [97.5, .5, .5, .5, .5, .5] // => [ 100, 0, 0, 0, 0, 0 ]

const normalizePercentageByNumber = (input) => {
    const rounded: number[] = input.map(x => Math.floor(x));
    const afterRoundSum = rounded.reduce((pre, curr) => pre + curr, 0);
    const countMutableItems = rounded.filter(x => x >=1).length;
    const errorRate = 100 - afterRoundSum;
    
    const deductPortion = Math.ceil(errorRate / countMutableItems);
    
    const biggest = [...rounded].sort((a, b) => b - a).slice(0, Math.min(Math.abs(errorRate), countMutableItems));
    const result = rounded.map(x => {
        const indexOfX = biggest.indexOf(x);
        if (indexOfX >= 0) {
            x += deductPortion;
            console.log(biggest)
            biggest.splice(indexOfX, 1);
            return x;
        }
        return x;
    });
    return result;
}

3例

const normalizePercentageByDecimal = (input: number[]) => {

    const rounded= input.map((x, i) => ({number: Math.floor(x), decimal: x%1, index: i }));

    const decimalSorted= [...rounded].sort((a,b)=> b.decimal-a.decimal);
    
    const sum = rounded.reduce((pre, curr)=> pre + curr.number, 0) ;
    const error= 100-sum;
    
    for (let i = 0; i < error; i++) {
        const element = decimalSorted[i];
        element.number++;
    }

    const result= [...decimalSorted].sort((a,b)=> a.index-b.index);
    
    return result.map(x=> x.number);
}

4例

你只需要计算在每次汇总的数字中增加或减去多少额外的空气,然后在下一项中再增加或减去它。

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [14, 48, 10, 28 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [17, 16, 17, 16, 17, 17]
const v3 = [33.333, 33.333, 33.333] // => [33, 34, 33]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [33, 34, 33, 0]

const normalizePercentageByWave= v4.reduce((pre, curr, i, arr) => {

    let number = Math.round(curr + pre.decimal);
    let total = pre.total + number;

    const decimal = curr - number;

    if (i == arr.length - 1 && total < 100) {
        const diff = 100 - total;
        total += diff;
        number += diff;
    }

    return { total, numbers: [...pre.numbers, number], decimal };

}, { total: 0, numbers: [], decimal: 0 });

如果你只有两个选项,你可以使用Math.round()。唯一有问题的值对是X.5(例如;37.5和62.5)它会四舍五入两个值,你最终会得到101%,你可以试试这里:

https://jsfiddle.net/f8np1t0k/2/

因为你需要始终显示100%,你只需从它们中删除一个百分比,例如在第一个

const correctedar= Number.isInteger(around -0.5) ?A - 1: A

或者你可以选择有更多%选票的选项。

1% diff的错误在1-100对值的划分的10k例中发生114次。


我的JS实现由Varun Vohra投票的答案

const set1 = [13.626332, 47.989636, 9.596008, 28.788024];
// const set2 = [24.25, 23.25, 27.25, 25.25];

const values = set1;

console.log('Total: ', values.reduce((accum, each) => accum + each));
console.log('Incorrectly Rounded: ', 
  values.reduce((accum, each) => accum + Math.round(each), 0));

const adjustValues = (values) => {
  // 1. Separate integer and decimal part
  // 2. Store both in a new array of objects sorted by decimal part descending
  // 3. Add in original position to "put back" at the end
  const flooredAndSortedByDecimal = values.map((value, position) => (
    {
        floored: Math.floor(value),
        decimal: value - Number.parseInt(value),
        position
    }
  )).sort(({decimal}, {decimal: otherDecimal}) => otherDecimal - decimal);

  const roundedTotal = values.reduce((total, value) => total + Math.floor(value), 0);
  let availableForDistribution = 100 - roundedTotal;

  // Add 1 to each value from what's available
  const adjustedValues = flooredAndSortedByDecimal.map(value => {
    const { floored, ...rest } = value;
    let finalPercentage = floored;
    if(availableForDistribution > 0){
        finalPercentage = floored + 1;
        availableForDistribution--;
    }

    return {
        finalPercentage,
        ...rest
    }
  });

  // Put back and return the new values
  return adjustedValues
    .sort(({position}, {position: otherPosition}) => position - otherPosition)
    .map(({finalPercentage}) => finalPercentage);
}

const finalPercentages = adjustValues(values);
console.log({finalPercentages})

// { finalPercentage: [14, 48, 9, 29]}

或者像这样简单,你只需要累积误差…

const p = [13.626332, 47.989636, 9.596008, 28.788024];
const round = (a, e = 0) => a.map(x => (r = Math.round(x + e), e += x - r, r));
console.log(round(p));

结果:[14,48,9,29]


我用Javascript写了一个函数,它接受一个百分比数组,并使用最大余数方法输出一个四舍五入的百分比数组。它不使用任何库。

输入:[21.6,46.7,31,0.5,0.2]

输出:[22,47,31,0,0]

const values = [21.6, 46.7, 31, 0.5, 0.2]; console.log(roundPercentages(values)); function roundPercentages(values) { const flooredValues = values.map(e => Math.floor(e)); const remainders = values.map(e => e - Math.floor(e)); const totalRemainder = 100 - flooredValues.reduce((a, b) => a + b); // Deep copy because order of remainders is important [...remainders] // Sort from highest to lowest remainder .sort((a, b) => b - a) // Get the n largest remainder values, where n = totalRemainder .slice(0, totalRemainder) // Add 1 to the floored percentages with the highest remainder (divide the total remainder) .forEach(e => flooredValues[remainders.indexOf(e)] += 1); return flooredValues; }