考虑下面四个百分比,用浮点数表示:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。

14 + 48 + 10 + 29 = 101

如果我使用parseInt(),我最终得到了97%。

13 + 47 + 9 + 28 = 97

有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?


编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。

在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。


当前回答

如果你只有两个选项,你可以使用Math.round()。唯一有问题的值对是X.5(例如;37.5和62.5)它会四舍五入两个值,你最终会得到101%,你可以试试这里:

https://jsfiddle.net/f8np1t0k/2/

因为你需要始终显示100%,你只需从它们中删除一个百分比,例如在第一个

const correctedar= Number.isInteger(around -0.5) ?A - 1: A

或者你可以选择有更多%选票的选项。

1% diff的错误在1-100对值的划分的10k例中发生114次。

其他回答

我用Javascript写了一个函数,它接受一个百分比数组,并使用最大余数方法输出一个四舍五入的百分比数组。它不使用任何库。

输入:[21.6,46.7,31,0.5,0.2]

输出:[22,47,31,0,0]

const values = [21.6, 46.7, 31, 0.5, 0.2]; console.log(roundPercentages(values)); function roundPercentages(values) { const flooredValues = values.map(e => Math.floor(e)); const remainders = values.map(e => e - Math.floor(e)); const totalRemainder = 100 - flooredValues.reduce((a, b) => a + b); // Deep copy because order of remainders is important [...remainders] // Sort from highest to lowest remainder .sort((a, b) => b - a) // Get the n largest remainder values, where n = totalRemainder .slice(0, totalRemainder) // Add 1 to the floored percentages with the highest remainder (divide the total remainder) .forEach(e => flooredValues[remainders.indexOf(e)] += 1); return flooredValues; }

我曾经写过一个un舍入工具,来找到一组数字的最小扰动来匹配一个目标。这是一个不同的问题,但理论上可以在这里使用类似的想法。在这种情况下,我们有一系列的选择。

因此,对于第一个元素,我们可以四舍五入到14,也可以四舍五入到13。这样做的代价(在二进制整数编程的意义上)对于向上舍入比向下舍入要小,因为向下舍入需要我们将该值移动更大的距离。同样,我们可以把每个数字四舍五入,所以我们总共有16个选择。

  13.626332
  47.989636
   9.596008
+ 28.788024
-----------
 100.000000

我通常会在MATLAB中使用bintprog(一种二进制整数编程工具)解决一般问题,但这里只有几个选项需要测试,所以用简单的循环就可以很容易地测试出16个选项中的每一个。例如,假设我们将这个集合四舍五入为:

 Original      Rounded   Absolute error
   13.626           13          0.62633
    47.99           48          0.01036
    9.596           10          0.40399
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.25266

总绝对误差为1.25266。它可以通过以下替代舍入来略微减少:

 Original      Rounded   Absolute error
   13.626           14          0.37367
    47.99           48          0.01036
    9.596            9          0.59601
 + 28.788           29          0.21198
---------------------------------------
  100.000          100          1.19202

事实上,这就是绝对误差的最优解。当然,如果有20项,搜索空间的大小将是2^20 = 1048576。对于30或40个术语,这个空间将是相当大的。在这种情况下,您将需要使用能够有效搜索空间的工具,可能使用分支和绑定方案。

可能做到这一点的“最佳”方法(引用是因为“最佳”是一个主观术语)是保持你所处位置的连续(非积分)计数,并四舍五入该值。

然后将其与历史记录一起使用,以确定应该使用什么值。例如,使用您给出的值:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
13.626332   13.626332            14             0    14 ( 14 -  0)
47.989636   61.615968            62            14    48 ( 62 - 14)
 9.596008   71.211976            71            62     9 ( 71 - 62)
28.788024  100.000000           100            71    29 (100 - 71)
                                                    ---
                                                    100

在每个阶段,都不需要四舍五入数字本身。相反,将累积值四舍五入,并计算出从上一个基线中达到该值的最佳整数——该基线是前一行的累积值(四舍五入)。

这是可行的,因为您不会在每个阶段都丢失信息,而是更聪明地使用信息。“正确的”四舍五入值在最后一列,你可以看到它们的和是100。

在上面的第三个值中,您可以看到这与盲目舍入每个值之间的区别。虽然9.596008通常会四舍五入到10,但累积的71.211976正确地四舍五入到71 -这意味着只需要9就可以加上之前的基线62。


这也适用于“有问题的”序列,比如三个大约1/3的值,其中一个应该四舍五入:

Value      CumulValue  CumulRounded  PrevBaseline  Need
---------  ----------  ------------  ------------  ----
                                  0
33.333333   33.333333            33             0    33 ( 33 -  0)
33.333333   66.666666            67            33    34 ( 67 - 33)
33.333333   99.999999           100            67    33 (100 - 67)
                                                    ---
                                                    100

我不确定你需要什么程度的精度,但我要做的就是简单地把前n个数字加1,n是小数总和的上界。在这种情况下,它是3,所以我将给前3项加1,然后将其余的取整。当然,这并不是非常准确,有些数字可能会四舍五入或在不应该的时候,但它工作得很好,总是会得到100%。

因此[13.626332,47.989636,9.596008,28.788024]将是[14,48,10,28],因为Math.ceil(.626332+.989636+.596008+.788024) == 3

function evenRound( arr ) {
  var decimal = -~arr.map(function( a ){ return a % 1 })
    .reduce(function( a,b ){ return a + b }); // Ceil of total sum of decimals
  for ( var i = 0; i < decimal; ++i ) {
    arr[ i ] = ++arr[ i ]; // compensate error by adding 1 the the first n items
  }
  return arr.map(function( a ){ return ~~a }); // floor all other numbers
}

var nums = evenRound( [ 13.626332, 47.989636, 9.596008, 28.788024 ] );
var total = nums.reduce(function( a,b ){ return a + b }); //=> 100

你总是可以告诉用户这些数字是四舍五入的,可能不是非常准确……

如果你只有两个选项,你可以使用Math.round()。唯一有问题的值对是X.5(例如;37.5和62.5)它会四舍五入两个值,你最终会得到101%,你可以试试这里:

https://jsfiddle.net/f8np1t0k/2/

因为你需要始终显示100%,你只需从它们中删除一个百分比,例如在第一个

const correctedar= Number.isInteger(around -0.5) ?A - 1: A

或者你可以选择有更多%选票的选项。

1% diff的错误在1-100对值的划分的10k例中发生114次。