考虑下面四个百分比,用浮点数表示:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。

14 + 48 + 10 + 29 = 101

如果我使用parseInt(),我最终得到了97%。

13 + 47 + 9 + 28 = 97

有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?


编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。

在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。


当前回答

我已经实现了Varun Vohra的答案在这里的列表和字典的方法。

import math
import numbers
import operator
import itertools


def round_list_percentages(number_list):
    """
    Takes a list where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    if not all(isinstance(i, numbers.Number) for i in number_list):
        raise ValueError('All values of the list must be a number')

    # Generate a key for each value
    key_generator = itertools.count()
    value_dict = {next(key_generator): value for value in number_list}
    return round_dictionary_percentages(value_dict).values()


def round_dictionary_percentages(dictionary):
    """
    Takes a dictionary where all values are numbers that add up to 100,
    and rounds them off to integers while still retaining a sum of 100.

    A total value sum that rounds to 100.00 with two decimals is acceptable.
    This ensures that all input where the values are calculated with [fraction]/[total]
    and the sum of all fractions equal the total, should pass.
    """
    # Check input
    # Only allow numbers
    if not all(isinstance(i, numbers.Number) for i in dictionary.values()):
        raise ValueError('All values of the dictionary must be a number')
    # Make sure the sum is close enough to 100
    # Round value_sum to 2 decimals to avoid floating point representation errors
    value_sum = round(sum(dictionary.values()), 2)
    if not value_sum == 100:
        raise ValueError('The sum of the values must be 100')

    # Initial floored results
    # Does not add up to 100, so we need to add something
    result = {key: int(math.floor(value)) for key, value in dictionary.items()}

    # Remainders for each key
    result_remainders = {key: value % 1 for key, value in dictionary.items()}
    # Keys sorted by remainder (biggest first)
    sorted_keys = [key for key, value in sorted(result_remainders.items(), key=operator.itemgetter(1), reverse=True)]

    # Otherwise add missing values up to 100
    # One cycle is enough, since flooring removes a max value of < 1 per item,
    # i.e. this loop should always break before going through the whole list
    for key in sorted_keys:
        if sum(result.values()) == 100:
            break
        result[key] += 1

    # Return
    return result

其他回答

如果你真的必须四舍五入,这里已经有了很好的建议(最大余数,最小相对误差,等等)。

也有一个很好的理由不四舍五入(你至少会得到一个“看起来更好”但“错误”的数字),以及如何解决这个问题(警告你的读者),这就是我所做的。

让我加上“错误”的数字部分。

假设你有三个事件/实体/…用一些百分比来近似:

DAY 1
who |  real | app
----|-------|------
  A | 33.34 |  34
  B | 33.33 |  33
  C | 33.33 |  33

稍后,值略有变化,为

DAY 2
who |  real | app
----|-------|------
  A | 33.35 |  33
  B | 33.36 |  34
  C | 33.29 |  33

第一个表有前面提到的“错误”数字的问题:33.34更接近33而不是34。

但现在误差更大了。与第2天和第1天相比,A的实际百分比值增加了0.01%,但近似值显示下降了1%。

这是一个定性错误,可能比最初的定量错误更严重。

你可以为整个集合设计一个近似值,但是,你可能必须在第一天发布数据,因此你不知道第二天的情况。所以,除非你真的,真的,必须近似,否则最好不要。

检查如果这是有效的或不就我的测试用例,我能够得到这个工作。

假设number是k;

按降序排序百分比。 从降序遍历每个百分比。 计算k的百分比第一个百分比采取数学。输出的天花板。 下一个k = k-1 遍历直到所有百分比被消耗。

因为这里没有一个答案似乎能正确解决这个问题,下面是我使用下划线的半模糊版本:

function foo(l, target) {
    var off = target - _.reduce(l, function(acc, x) { return acc + Math.round(x) }, 0);
    return _.chain(l).
            sortBy(function(x) { return Math.round(x) - x }).
            map(function(x, i) { return Math.round(x) + (off > i) - (i >= (l.length + off)) }).
            value();
}

foo([13.626332, 47.989636, 9.596008, 28.788024], 100) // => [48, 29, 14, 9]
foo([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100) // => [17, 17, 17, 17, 16, 16]
foo([33.333, 33.333, 33.333], 100) // => [34, 33, 33]
foo([33.3, 33.3, 33.3, 0.1], 100) // => [34, 33, 33, 0]

注意:选择的答案是改变数组的顺序,这不是首选的,在这里我提供了更多不同的变化,以实现相同的结果,并保持数组的顺序

讨论

给定[98.88,.56,.56]你想怎么四舍五入呢?你有四种选择

1-四舍五入,并从其余数字中减去加法,因此结果为[98,1,1]

这可能是一个很好的答案,但是如果我们有[97.5,.5,.5,.5,.5,.5]呢?然后你需要四舍五入到[95,1,1,1,1,1]

你明白是怎么回事了吗?如果你添加更多类似0的数字,你将从剩下的数字中失去更多的值。当你有一个像[40,.5,.5,…, 5]。当你四舍五入时,你可以得到一个1的数组:[1,1,....1)

所以集合不是一个好选择。

2-四舍五入。所以[98.88,.56,.56]变成[98,0,0],那么你比100少2。你忽略任何已经为0的数,然后把它们的差加起来,得到最大的数。所以越大的数字就会得到越多。

3-和前面一样,向下四舍五入,但你根据小数降序排序,根据小数划分差异,所以最大的小数将得到差异。

4-四舍五入,但你把你加到下一个数字上的数加起来。就像一个波一样,你添加的东西会被重定向到数组的末尾。所以[98.88,.56,.56]变成了[99,0,1]

这些都不是理想的,所以要注意您的数据会失去形状。

在这里,我为情况2和3提供了一个代码(因为当你有很多类似零的数字时,情况1是不实际的)。它是现代的Js,不需要任何库来使用

2例

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [ 14, 48, 9, 29 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [ 17, 17, 17, 17, 16, 16 ] 
const v3 = [33.333, 33.333, 33.333] // => [ 34, 33, 33 ]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [ 34, 33, 33, 0 ]
const v5 = [98.88, .56, .56] // =>[ 100, 0, 0 ]
const v6 = [97.5, .5, .5, .5, .5, .5] // => [ 100, 0, 0, 0, 0, 0 ]

const normalizePercentageByNumber = (input) => {
    const rounded: number[] = input.map(x => Math.floor(x));
    const afterRoundSum = rounded.reduce((pre, curr) => pre + curr, 0);
    const countMutableItems = rounded.filter(x => x >=1).length;
    const errorRate = 100 - afterRoundSum;
    
    const deductPortion = Math.ceil(errorRate / countMutableItems);
    
    const biggest = [...rounded].sort((a, b) => b - a).slice(0, Math.min(Math.abs(errorRate), countMutableItems));
    const result = rounded.map(x => {
        const indexOfX = biggest.indexOf(x);
        if (indexOfX >= 0) {
            x += deductPortion;
            console.log(biggest)
            biggest.splice(indexOfX, 1);
            return x;
        }
        return x;
    });
    return result;
}

3例

const normalizePercentageByDecimal = (input: number[]) => {

    const rounded= input.map((x, i) => ({number: Math.floor(x), decimal: x%1, index: i }));

    const decimalSorted= [...rounded].sort((a,b)=> b.decimal-a.decimal);
    
    const sum = rounded.reduce((pre, curr)=> pre + curr.number, 0) ;
    const error= 100-sum;
    
    for (let i = 0; i < error; i++) {
        const element = decimalSorted[i];
        element.number++;
    }

    const result= [...decimalSorted].sort((a,b)=> a.index-b.index);
    
    return result.map(x=> x.number);
}

4例

你只需要计算在每次汇总的数字中增加或减去多少额外的空气,然后在下一项中再增加或减去它。

const v1 = [13.626332, 47.989636, 9.596008, 28.788024];// => [14, 48, 10, 28 ]
const v2 = [16.666, 16.666, 16.666, 16.666, 16.666, 16.666] // => [17, 16, 17, 16, 17, 17]
const v3 = [33.333, 33.333, 33.333] // => [33, 34, 33]
const v4 = [33.3, 33.3, 33.3, 0.1] // => [33, 34, 33, 0]

const normalizePercentageByWave= v4.reduce((pre, curr, i, arr) => {

    let number = Math.round(curr + pre.decimal);
    let total = pre.total + number;

    const decimal = curr - number;

    if (i == arr.length - 1 && total < 100) {
        const diff = 100 - total;
        total += diff;
        number += diff;
    }

    return { total, numbers: [...pre.numbers, number], decimal };

}, { total: 0, numbers: [], decimal: 0 });

我认为以下几点可以达到你的目的

function func( orig, target ) {

    var i = orig.length, j = 0, total = 0, change, newVals = [], next, factor1, factor2, len = orig.length, marginOfErrors = [];

    // map original values to new array
    while( i-- ) {
        total += newVals[i] = Math.round( orig[i] );
    }

    change = total < target ? 1 : -1;

    while( total !== target ) {

        // Iterate through values and select the one that once changed will introduce
        // the least margin of error in terms of itself. e.g. Incrementing 10 by 1
        // would mean an error of 10% in relation to the value itself.
        for( i = 0; i < len; i++ ) {

            next = i === len - 1 ? 0 : i + 1;

            factor2 = errorFactor( orig[next], newVals[next] + change );
            factor1 = errorFactor( orig[i], newVals[i] + change );

            if(  factor1 > factor2 ) {
                j = next; 
            }
        }

        newVals[j] += change;
        total += change;
    }


    for( i = 0; i < len; i++ ) { marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i]; }

    // Math.round() causes some problems as it is difficult to know at the beginning
    // whether numbers should have been rounded up or down to reduce total margin of error. 
    // This section of code increments and decrements values by 1 to find the number
    // combination with least margin of error.
    for( i = 0; i < len; i++ ) {
        for( j = 0; j < len; j++ ) {
            if( j === i ) continue;

            var roundUpFactor = errorFactor( orig[i], newVals[i] + 1)  + errorFactor( orig[j], newVals[j] - 1 );
            var roundDownFactor = errorFactor( orig[i], newVals[i] - 1) + errorFactor( orig[j], newVals[j] + 1 );
            var sumMargin = marginOfErrors[i] + marginOfErrors[j];

            if( roundUpFactor < sumMargin) { 
                newVals[i] = newVals[i] + 1;
                newVals[j] = newVals[j] - 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

            if( roundDownFactor < sumMargin ) { 
                newVals[i] = newVals[i] - 1;
                newVals[j] = newVals[j] + 1;
                marginOfErrors[i] = newVals[i] && Math.abs( orig[i] - newVals[i] ) / orig[i];
                marginOfErrors[j] = newVals[j] && Math.abs( orig[j] - newVals[j] ) / orig[j];
            }

        }
    }

    function errorFactor( oldNum, newNum ) {
        return Math.abs( oldNum - newNum ) / oldNum;
    }

    return newVals;
}


func([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100); // => [16, 16, 17, 17, 17, 17]
func([33.333, 33.333, 33.333], 100); // => [34, 33, 33]
func([33.3, 33.3, 33.3, 0.1], 100); // => [34, 33, 33, 0] 
func([13.25, 47.25, 11.25, 28.25], 100 ); // => [13, 48, 11, 28]
func( [25.5, 25.5, 25.5, 23.5], 100 ); // => [25, 25, 26, 24]

最后一件事,我使用问题中最初给出的数字运行函数,与期望的输出进行比较

func([13.626332, 47.989636, 9.596008, 28.788024], 100); // => [48, 29, 13, 10]

这与问题想要的不同=>[48,29,14,9]。我无法理解这一点,直到我看了总误差范围

-------------------------------------------------
| original  | question | % diff | mine | % diff |
-------------------------------------------------
| 13.626332 | 14       | 2.74%  | 13   | 4.5%   |
| 47.989636 | 48       | 0.02%  | 48   | 0.02%  |
| 9.596008  | 9        | 6.2%   | 10   | 4.2%   |
| 28.788024 | 29       | 0.7%   | 29   | 0.7%   |
-------------------------------------------------
| Totals    | 100      | 9.66%  | 100  | 9.43%  |
-------------------------------------------------

从本质上讲,我的函数的结果实际上引入了最少的误差。

小提琴在这里