考虑下面四个百分比,用浮点数表示:
13.626332%
47.989636%
9.596008%
28.788024%
-----------
100.000000%
我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。
14 + 48 + 10 + 29 = 101
如果我使用parseInt(),我最终得到了97%。
13 + 47 + 9 + 28 = 97
有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?
编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。
在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:
value rounded error decision
----------------------------------------------------
13.626332 14 2.7% round up (14)
47.989636 48 0.0% round up (48)
9.596008 10 4.0% don't round up (9)
28.788024 29 2.7% round up (29)
在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。
可能做到这一点的“最佳”方法(引用是因为“最佳”是一个主观术语)是保持你所处位置的连续(非积分)计数,并四舍五入该值。
然后将其与历史记录一起使用,以确定应该使用什么值。例如,使用您给出的值:
Value CumulValue CumulRounded PrevBaseline Need
--------- ---------- ------------ ------------ ----
0
13.626332 13.626332 14 0 14 ( 14 - 0)
47.989636 61.615968 62 14 48 ( 62 - 14)
9.596008 71.211976 71 62 9 ( 71 - 62)
28.788024 100.000000 100 71 29 (100 - 71)
---
100
在每个阶段,都不需要四舍五入数字本身。相反,将累积值四舍五入,并计算出从上一个基线中达到该值的最佳整数——该基线是前一行的累积值(四舍五入)。
这是可行的,因为您不会在每个阶段都丢失信息,而是更聪明地使用信息。“正确的”四舍五入值在最后一列,你可以看到它们的和是100。
在上面的第三个值中,您可以看到这与盲目舍入每个值之间的区别。虽然9.596008通常会四舍五入到10,但累积的71.211976正确地四舍五入到71 -这意味着只需要9就可以加上之前的基线62。
这也适用于“有问题的”序列,比如三个大约1/3的值,其中一个应该四舍五入:
Value CumulValue CumulRounded PrevBaseline Need
--------- ---------- ------------ ------------ ----
0
33.333333 33.333333 33 0 33 ( 33 - 0)
33.333333 66.666666 67 33 34 ( 67 - 33)
33.333333 99.999999 100 67 33 (100 - 67)
---
100
我已经实现了Varun Vohra的答案在这里的列表和字典的方法。
import math
import numbers
import operator
import itertools
def round_list_percentages(number_list):
"""
Takes a list where all values are numbers that add up to 100,
and rounds them off to integers while still retaining a sum of 100.
A total value sum that rounds to 100.00 with two decimals is acceptable.
This ensures that all input where the values are calculated with [fraction]/[total]
and the sum of all fractions equal the total, should pass.
"""
# Check input
if not all(isinstance(i, numbers.Number) for i in number_list):
raise ValueError('All values of the list must be a number')
# Generate a key for each value
key_generator = itertools.count()
value_dict = {next(key_generator): value for value in number_list}
return round_dictionary_percentages(value_dict).values()
def round_dictionary_percentages(dictionary):
"""
Takes a dictionary where all values are numbers that add up to 100,
and rounds them off to integers while still retaining a sum of 100.
A total value sum that rounds to 100.00 with two decimals is acceptable.
This ensures that all input where the values are calculated with [fraction]/[total]
and the sum of all fractions equal the total, should pass.
"""
# Check input
# Only allow numbers
if not all(isinstance(i, numbers.Number) for i in dictionary.values()):
raise ValueError('All values of the dictionary must be a number')
# Make sure the sum is close enough to 100
# Round value_sum to 2 decimals to avoid floating point representation errors
value_sum = round(sum(dictionary.values()), 2)
if not value_sum == 100:
raise ValueError('The sum of the values must be 100')
# Initial floored results
# Does not add up to 100, so we need to add something
result = {key: int(math.floor(value)) for key, value in dictionary.items()}
# Remainders for each key
result_remainders = {key: value % 1 for key, value in dictionary.items()}
# Keys sorted by remainder (biggest first)
sorted_keys = [key for key, value in sorted(result_remainders.items(), key=operator.itemgetter(1), reverse=True)]
# Otherwise add missing values up to 100
# One cycle is enough, since flooring removes a max value of < 1 per item,
# i.e. this loop should always break before going through the whole list
for key in sorted_keys:
if sum(result.values()) == 100:
break
result[key] += 1
# Return
return result
因为这里没有一个答案似乎能正确解决这个问题,下面是我使用下划线的半模糊版本:
function foo(l, target) {
var off = target - _.reduce(l, function(acc, x) { return acc + Math.round(x) }, 0);
return _.chain(l).
sortBy(function(x) { return Math.round(x) - x }).
map(function(x, i) { return Math.round(x) + (off > i) - (i >= (l.length + off)) }).
value();
}
foo([13.626332, 47.989636, 9.596008, 28.788024], 100) // => [48, 29, 14, 9]
foo([16.666, 16.666, 16.666, 16.666, 16.666, 16.666], 100) // => [17, 17, 17, 17, 16, 16]
foo([33.333, 33.333, 33.333], 100) // => [34, 33, 33]
foo([33.3, 33.3, 33.3, 0.1], 100) // => [34, 33, 33, 0]
我曾经写过一个un舍入工具,来找到一组数字的最小扰动来匹配一个目标。这是一个不同的问题,但理论上可以在这里使用类似的想法。在这种情况下,我们有一系列的选择。
因此,对于第一个元素,我们可以四舍五入到14,也可以四舍五入到13。这样做的代价(在二进制整数编程的意义上)对于向上舍入比向下舍入要小,因为向下舍入需要我们将该值移动更大的距离。同样,我们可以把每个数字四舍五入,所以我们总共有16个选择。
13.626332
47.989636
9.596008
+ 28.788024
-----------
100.000000
我通常会在MATLAB中使用bintprog(一种二进制整数编程工具)解决一般问题,但这里只有几个选项需要测试,所以用简单的循环就可以很容易地测试出16个选项中的每一个。例如,假设我们将这个集合四舍五入为:
Original Rounded Absolute error
13.626 13 0.62633
47.99 48 0.01036
9.596 10 0.40399
+ 28.788 29 0.21198
---------------------------------------
100.000 100 1.25266
总绝对误差为1.25266。它可以通过以下替代舍入来略微减少:
Original Rounded Absolute error
13.626 14 0.37367
47.99 48 0.01036
9.596 9 0.59601
+ 28.788 29 0.21198
---------------------------------------
100.000 100 1.19202
事实上,这就是绝对误差的最优解。当然,如果有20项,搜索空间的大小将是2^20 = 1048576。对于30或40个术语,这个空间将是相当大的。在这种情况下,您将需要使用能够有效搜索空间的工具,可能使用分支和绑定方案。