考虑下面四个百分比,用浮点数表示:
13.626332%
47.989636%
9.596008%
28.788024%
-----------
100.000000%
我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。
14 + 48 + 10 + 29 = 101
如果我使用parseInt(),我最终得到了97%。
13 + 47 + 9 + 28 = 97
有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?
编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。
在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:
value rounded error decision
----------------------------------------------------
13.626332 14 2.7% round up (14)
47.989636 48 0.0% round up (48)
9.596008 10 4.0% don't round up (9)
28.788024 29 2.7% round up (29)
在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。
下面是@varun-vohra答案的一个简单的Python实现:
def apportion_pcts(pcts, total):
proportions = [total * (pct / 100) for pct in pcts]
apportions = [math.floor(p) for p in proportions]
remainder = total - sum(apportions)
remainders = [(i, p - math.floor(p)) for (i, p) in enumerate(proportions)]
remainders.sort(key=operator.itemgetter(1), reverse=True)
for (i, _) in itertools.cycle(remainders):
if remainder == 0:
break
else:
apportions[i] += 1
remainder -= 1
return apportions
你需要math, itertools, operator。
不要把四舍五入的数字相加。你会得到不准确的结果。总数可能会显著偏离,这取决于术语的数量和小数部分的分布。
显示四舍五入的数字,但和实际值。根据你呈现数字的方式不同,实际的方法也会有所不同。这样你就能得到
14
48
10
29
__
100
不管怎样,都会有差异。在你的例子中,没有办法显示加起来等于100的数字而不以错误的方式“舍入”一个值(最小的错误是将9.596更改为9)
EDIT
你需要在以下选项中做出选择:
项目的准确性
和的准确性(如果你是四舍五入的值)
四舍五入的项目与四舍五入的总和的一致性)
大多数情况下,当处理百分比时,第三种方法是最好的选择,因为当总数等于101%时比当单个项目的总数不等于100时更明显,并且您可以保持单个项目的准确性。“舍入”9.596到9在我看来是不准确的。
为了解释这一点,我有时会添加一个脚注,解释各个值是四舍五入的,可能不是100% -任何理解四舍五入的人都应该能够理解这个解释。
我用Javascript写了一个函数,它接受一个百分比数组,并使用最大余数方法输出一个四舍五入的百分比数组。它不使用任何库。
输入:[21.6,46.7,31,0.5,0.2]
输出:[22,47,31,0,0]
const values = [21.6, 46.7, 31, 0.5, 0.2];
console.log(roundPercentages(values));
function roundPercentages(values) {
const flooredValues = values.map(e => Math.floor(e));
const remainders = values.map(e => e - Math.floor(e));
const totalRemainder = 100 - flooredValues.reduce((a, b) => a + b);
// Deep copy because order of remainders is important
[...remainders]
// Sort from highest to lowest remainder
.sort((a, b) => b - a)
// Get the n largest remainder values, where n = totalRemainder
.slice(0, totalRemainder)
// Add 1 to the floored percentages with the highest remainder (divide the total remainder)
.forEach(e => flooredValues[remainders.indexOf(e)] += 1);
return flooredValues;
}
我已经实现了Varun Vohra的答案在这里的列表和字典的方法。
import math
import numbers
import operator
import itertools
def round_list_percentages(number_list):
"""
Takes a list where all values are numbers that add up to 100,
and rounds them off to integers while still retaining a sum of 100.
A total value sum that rounds to 100.00 with two decimals is acceptable.
This ensures that all input where the values are calculated with [fraction]/[total]
and the sum of all fractions equal the total, should pass.
"""
# Check input
if not all(isinstance(i, numbers.Number) for i in number_list):
raise ValueError('All values of the list must be a number')
# Generate a key for each value
key_generator = itertools.count()
value_dict = {next(key_generator): value for value in number_list}
return round_dictionary_percentages(value_dict).values()
def round_dictionary_percentages(dictionary):
"""
Takes a dictionary where all values are numbers that add up to 100,
and rounds them off to integers while still retaining a sum of 100.
A total value sum that rounds to 100.00 with two decimals is acceptable.
This ensures that all input where the values are calculated with [fraction]/[total]
and the sum of all fractions equal the total, should pass.
"""
# Check input
# Only allow numbers
if not all(isinstance(i, numbers.Number) for i in dictionary.values()):
raise ValueError('All values of the dictionary must be a number')
# Make sure the sum is close enough to 100
# Round value_sum to 2 decimals to avoid floating point representation errors
value_sum = round(sum(dictionary.values()), 2)
if not value_sum == 100:
raise ValueError('The sum of the values must be 100')
# Initial floored results
# Does not add up to 100, so we need to add something
result = {key: int(math.floor(value)) for key, value in dictionary.items()}
# Remainders for each key
result_remainders = {key: value % 1 for key, value in dictionary.items()}
# Keys sorted by remainder (biggest first)
sorted_keys = [key for key, value in sorted(result_remainders.items(), key=operator.itemgetter(1), reverse=True)]
# Otherwise add missing values up to 100
# One cycle is enough, since flooring removes a max value of < 1 per item,
# i.e. this loop should always break before going through the whole list
for key in sorted_keys:
if sum(result.values()) == 100:
break
result[key] += 1
# Return
return result