考虑下面四个百分比,用浮点数表示:

    13.626332%
    47.989636%
     9.596008%
    28.788024%
   -----------
   100.000000%

我需要用整数表示这些百分比。如果我简单地使用Math.round(),我最终得到的总数是101%。

14 + 48 + 10 + 29 = 101

如果我使用parseInt(),我最终得到了97%。

13 + 47 + 9 + 28 = 97

有什么好的算法可以将任何百分比数表示为整数,同时还保持总数为100%?


编辑:在阅读了一些评论和回答后,显然有很多方法可以解决这个问题。

在我看来,为了保持数字的真实性,“正确”的结果是最小化总体误差的结果,定义为相对于实际值会引入多少误差舍入:

        value  rounded     error               decision
   ----------------------------------------------------
    13.626332       14      2.7%          round up (14)
    47.989636       48      0.0%          round up (48)
     9.596008       10      4.0%    don't round up  (9)
    28.788024       29      2.7%          round up (29)

在平局的情况下(3.33,3.33,3.33)可以做出任意的决定(例如3,4,3)。


当前回答

这是一个银行家四舍五入的例子,又名“四舍五入半偶数”。BigDecimal支持。它的目的是确保四舍五入平衡,即不偏袒银行或客户。

其他回答

如果是四舍五入,就没有办法在所有情况下都得到完全相同的结果。

你可以取你拥有的N个百分比的小数部分(在你给出的例子中是4)。

把小数部分相加。在你的例子中,总分为3。

将分数最高的3个数字上排,其余的取底。

(抱歉修改了)

如果你真的必须四舍五入,这里已经有了很好的建议(最大余数,最小相对误差,等等)。

也有一个很好的理由不四舍五入(你至少会得到一个“看起来更好”但“错误”的数字),以及如何解决这个问题(警告你的读者),这就是我所做的。

让我加上“错误”的数字部分。

假设你有三个事件/实体/…用一些百分比来近似:

DAY 1
who |  real | app
----|-------|------
  A | 33.34 |  34
  B | 33.33 |  33
  C | 33.33 |  33

稍后,值略有变化,为

DAY 2
who |  real | app
----|-------|------
  A | 33.35 |  33
  B | 33.36 |  34
  C | 33.29 |  33

第一个表有前面提到的“错误”数字的问题:33.34更接近33而不是34。

但现在误差更大了。与第2天和第1天相比,A的实际百分比值增加了0.01%,但近似值显示下降了1%。

这是一个定性错误,可能比最初的定量错误更严重。

你可以为整个集合设计一个近似值,但是,你可能必须在第一天发布数据,因此你不知道第二天的情况。所以,除非你真的,真的,必须近似,否则最好不要。

只要您不关心对原始十进制数据的依赖,就有许多方法可以做到这一点。

第一种也是最流行的方法是最大余数法

基本上就是:

四舍五入 求sum和100的差值 将差值按小数部分的递减顺序加1

在你的例子中,它是这样的:

13.626332%
47.989636%
 9.596008%
28.788024%

如果取整数部分,就得到

13
47
 9
28

加起来是97,再加3。现在,你看小数点部分

.626332%
.989636%
.596008%
.788024%

取最大的,直到总数达到100。所以你会得到:

14
48
 9
29

或者,您可以简单地选择显示一个小数位而不是整数值。所以数字是48.3和23.9等等。这会使方差从100下降很多。

下面是@varun-vohra答案的一个简单的Python实现:

def apportion_pcts(pcts, total):
    proportions = [total * (pct / 100) for pct in pcts]
    apportions = [math.floor(p) for p in proportions]
    remainder = total - sum(apportions)
    remainders = [(i, p - math.floor(p)) for (i, p) in enumerate(proportions)]
    remainders.sort(key=operator.itemgetter(1), reverse=True)
    for (i, _) in itertools.cycle(remainders):
        if remainder == 0:
            break
        else:
            apportions[i] += 1
            remainder -= 1
    return apportions

你需要math, itertools, operator。

如果你只有两个选项,你可以使用Math.round()。唯一有问题的值对是X.5(例如;37.5和62.5)它会四舍五入两个值,你最终会得到101%,你可以试试这里:

https://jsfiddle.net/f8np1t0k/2/

因为你需要始终显示100%,你只需从它们中删除一个百分比,例如在第一个

const correctedar= Number.isInteger(around -0.5) ?A - 1: A

或者你可以选择有更多%选票的选项。

1% diff的错误在1-100对值的划分的10k例中发生114次。