我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我不能说python对lambda的具体实现,但一般来说lambda函数真的很方便。它们是函数式编程的核心技术(甚至是技术),在面向对象程序中也非常有用。对于某些类型的问题,它们是最好的解决方案,所以当然不应该忘记!
我建议你仔细阅读闭包和map函数(它链接到python文档,但它存在于几乎所有支持函数结构的语言中),看看它为什么有用。
你可以用lambda做的任何事情,都可以用命名函数或列表和生成器表达式做得更好。
因此,在大多数情况下,在任何情况下您都应该只使用其中一种(可能除了在交互式解释器中编写的草稿代码)。
我怀疑lambda不会消失。 请参阅Guido关于最终放弃尝试删除它的帖子。也请参阅冲突概要。
你可以看看这篇文章,了解更多Python函数特性背后的交易历史: http://python-history.blogspot.com/2009/04/origins-of-pythons-functional-features.html
奇怪的是,最初引入lambda和其他函数特性的map、filter和reduce函数在很大程度上已经被列表推导式和生成器表达式所取代。事实上,在Python 3.0中,reduce函数已从内置函数列表中删除。(但是,没有必要投诉lambda、map或filter的删除:它们被保留了。: -)
我个人的意见是:就清晰度而言,lambda值不了多少。通常有一个更清晰的不包含的解。
Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。
以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。
首先恭喜你算出了。在我看来,这是一个非常强大的构念。如今函数式编程语言的发展趋势无疑表明,在不久的将来,它既不应该被避免,也不会被重新定义。
你只需要换个角度思考。我相信你很快就会爱上它的。但是如果你只和python打交道要小心。因为lambda不是一个真正的闭包,它以某种方式“坏了”:python的lambda坏了
lambda是处理高阶函数的非常重要的抽象机制的一部分。为了正确理解它的价值,请观看Abelson和Sussman的高质量课程,并阅读《SICP》一书
这些都是与现代软件业务相关的问题,并且变得越来越流行。
你说的是lambda表达式吗?就像
lambda x: x**2 + 2*x - 5
这些东西其实很有用。Python支持一种称为函数式编程的编程风格,在这种编程风格中,您可以将函数传递给其他函数来执行某些操作。例子:
mult3 = filter(lambda x: x % 3 == 0, [1, 2, 3, 4, 5, 6, 7, 8, 9])
将mult3设置为[3,6,9],即原始列表中3的倍数的元素。这句话更短(有人可能会说,更清楚)
def filterfunc(x):
return x % 3 == 0
mult3 = filter(filterfunc, [1, 2, 3, 4, 5, 6, 7, 8, 9])
当然,在这个特殊的情况下,你可以做同样的事情作为一个列表推导:
mult3 = [x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9] if x % 3 == 0]
(甚至作为range(3,10,3)),但还有许多其他更复杂的用例,在这些用例中,您不能使用列表推导式,lambda函数可能是写出一些东西的最短方法。
Returning a function from another function >>> def transform(n): ... return lambda x: x + n ... >>> f = transform(3) >>> f(4) 7 This is often used to create function wrappers, such as Python's decorators. Combining elements of an iterable sequence with reduce() >>> reduce(lambda a, b: '{}, {}'.format(a, b), [1, 2, 3, 4, 5, 6, 7, 8, 9]) '1, 2, 3, 4, 5, 6, 7, 8, 9' Sorting by an alternate key >>> sorted([1, 2, 3, 4, 5, 6, 7, 8, 9], key=lambda x: abs(5-x)) [5, 4, 6, 3, 7, 2, 8, 1, 9]
我经常使用lambda函数。我花了一段时间来适应它们,但最终我明白了它们是语言中非常有价值的一部分。
我刚开始学习Python,然后一头栽进Lambda——这花了我一段时间才弄明白。
请注意,这不是对任何事情的谴责。每个人都有不容易得到的东西。
lambda是那些在现实生活中应该被遗忘的“有趣”语言项目之一吗?
No.
我相信有一些边缘情况可能需要它,但考虑到它的模糊性,
它并不晦涩。在我过去工作过的两个团队中,每个人都一直在使用这个功能。
它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)
除了几年前修复闭包语义之外,我还没有看到在Python中重新定义它的严肃建议。
编码清晰度的降低——应该避免吗?
如果你用对了,也不会不太清楚。相反,拥有更多可用的语言结构可以增加清晰度。
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值……有点像技术人员的表演技巧,但维护程序员的噩梦。
就像缓冲区溢出?哇。如果您认为lambda是一个“维护噩梦”,我无法想象您将如何使用它。
我经常使用它,主要是作为空对象或将参数部分绑定到函数。
下面是一些例子:
实现空对象模式:
{
DATA_PACKET: self.handle_data_packets
NET_PACKET: self.handle_hardware_packets
}.get(packet_type, lambda x : None)(payload)
对于参数绑定:
假设我有以下API
def dump_hex(file, var)
# some code
pass
class X(object):
#...
def packet_received(data):
# some kind of preprocessing
self.callback(data)
#...
然后,当我不想快速转储接收到的数据到一个文件,我这样做:
dump_file = file('hex_dump.txt','w')
X.callback = lambda (x): dump_hex(dump_file, x)
...
dump_file.close()
两行总结:
闭包:非常有用。学习它们,利用它们,热爱它们。 Python的lambda关键字:不必要,偶尔有用。如果你发现自己在用它做任何复杂的事情,把它放在一边,定义一个真正的函数。
I started reading David Mertz's book today 'Text Processing in Python.' While he has a fairly terse description of Lambda's the examples in the first chapter combined with the explanation in Appendix A made them jump off the page for me (finally) and all of a sudden I understood their value. That is not to say his explanation will work for you and I am still at the discovery stage so I will not attempt to add to these responses other than the following: I am new to Python I am new to OOP Lambdas were a struggle for me Now that I read Mertz, I think I get them and I see them as very useful as I think they allow a cleaner approach to programming.
He reproduces the Zen of Python, one line of which is Simple is better than complex. As a non-OOP programmer reading code with lambdas (and until last week list comprehensions) I have thought-This is simple?. I finally realized today that actually these features make the code much more readable, and understandable than the alternative-which is invariably a loop of some sort. I also realized that like financial statements-Python was not designed for the novice user, rather it is designed for the user that wants to get educated. I can't believe how powerful this language is. When it dawned on me (finally) the purpose and value of lambdas I wanted to rip up about 30 programs and start over putting in lambdas where appropriate.
在Python中,lambda只是内联定义函数的一种方式,
a = lambda x: x + 1
print a(1)
和. .
def a(x): return x + 1
print a(1)
..是完全一样的。
你可以用lambda做任何常规函数做不到的事情——Python函数和其他任何东西一样都是对象,lambdas只是定义一个函数:
>>> a = lambda x: x + 1
>>> type(a)
<type 'function'>
老实说,我认为lambda关键字在python中是多余的——我从来没有需要使用它们(或者见过使用它们的地方,常规函数、列表理解或许多内置函数中的一个本可以更好地使用)。
对于一个完全随机的例子,摘自文章“Python的lambda被破坏了!”:
要查看lambda是如何被破坏的,请尝试生成一个函数fs=[f0,…,f9]其中fi(n)=i+n。第一次尝试: >>> fs = [(lambda n: I + n) for I in range(10)] > > > fs [3] (4) 13
我想说的是,即使这样确实有效,它也太可怕了,而且是“非python化的”,同样的功能可以用无数其他方式来编写,例如:
>>> n = 4
>>> [i + n for i in range(10)]
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
是的,这是不一样的,但我从未见过需要在列表中生成一组lambda函数的原因。这在其他语言中可能是有意义的,但Python不是Haskell(或Lisp,或…)
请注意,我们可以使用lambda,仍然可以达到预期的效果 结果如下: >>> fs = [(lambda n,i=i: i + n) for i in range(10)] > > > fs [3] (4) 7
编辑:
在一些情况下lambda是有用的,例如在PyQt应用程序中连接信号时,它通常很方便,像这样:
w = PyQt4.QtGui.QLineEdit()
w.textChanged.connect(lambda event: dothing())
只是执行w.textChanged.connect(dothing)将使用额外的事件参数调用dothing方法并导致错误。使用lambda意味着我们可以整齐地删除参数,而不必定义包装函数。
只是函数的一种奇特说法。除了它的名字,它没有什么晦涩、吓人或神秘的地方。当你读到下面这行,在脑海中用函数替换lambda:
>>> f = lambda x: x + 1
>>> f(3)
4
它只是定义了一个关于x的函数。其他一些语言,比如R,显式地说:
> f = function(x) { x + 1 }
> f(3)
4
你看到了什么?这是编程中最自然的事情之一。
在我看来,lambda的一个好处是,它可以将简单表单的计算推迟到需要值时才进行。让我解释一下。
许多库例程的实现使得它们允许某些参数被调用(lambda是其中之一)。其思想是,实际值只在将要使用它的时候计算(而不是在调用它的时候)。一个(虚构的)例子可能有助于说明这一点。假设你有一个程序,它将记录一个给定的时间戳。您希望例程使用当前时间减去30分钟。你会这么说的
log_timestamp(datetime.datetime.now() - datetime.timedelta(minutes = 30))
现在假设实际函数只在某个事件发生时才被调用,并且您希望仅在该事件发生时计算时间戳。你可以这样做
log_timestamp(lambda : datetime.datetime.now() - datetime.timedelta(minutes = 30))
假设log_timestamp可以像这样处理可调用对象,它将在需要时计算这个值,届时您将获得时间戳。
当然,还有其他方法可以做到这一点(例如使用operator模块),但我希望我已经传达了这一点。
更新:这里有一个更具体的现实世界的例子。
更新2:我认为这是所谓的“坦克”的一个例子。
我发现lambda对于执行相同功能的函数列表很有用,但适用于不同的情况。
就像Mozilla的复数规则:
plural_rules = [
lambda n: 'all',
lambda n: 'singular' if n == 1 else 'plural',
lambda n: 'singular' if 0 <= n <= 1 else 'plural',
...
]
# Call plural rule #1 with argument 4 to find out which sentence form to use.
plural_rule[1](4) # returns 'plural'
如果你必须为所有这些定义一个函数,到最后你会疯掉的。 另外,像plural_rule_1, plural_rule_2这样的函数名也不太好。当你依赖于变量函数id时,你需要eval()它。
如上所述,Python中的lambda操作符定义了一个匿名函数,而Python中的函数是闭包。重要的是不要将闭包的概念与操作符lambda混淆,后者对它们来说只是句法上的美沙酮。
当我几年前开始使用Python时,我经常使用lambda,认为它们很酷,还有列表推导式。然而,我编写并维护了一个用Python编写的大型网站,其中有几千个功能点。我从经验中了解到,lambdas可能可以用来创建原型,但除了节省一些键,它不能提供任何内联函数(命名闭包),有时也不能。
基本上这可以归结为几点:
it is easier to read software that is explicitly written using meaningful names. Anonymous closures by definition cannot have a meaningful name, as they have no name. This brevity seems, for some reason, to also infect lambda parameters, hence we often see examples like lambda x: x+1 it is easier to reuse named closures, as they can be referred to by name more than once, when there is a name to refer to them by. it is easier to debug code that is using named closures instead of lambdas, because the name will appear in tracebacks, and around the error.
这就有足够的理由将它们集中起来,并将它们转换为命名闭包。然而,我对匿名闭包还有另外两个不满。
第一个不满是,它们只是又一个不必要的关键字,把语言弄得乱七八糟。
第二个不满是更深层次的,在范式层面上,也就是说,我不喜欢他们提倡一种函数式编程风格,因为这种风格不如消息传递、面向对象或过程式风格灵活,因为lambda微积分不是图灵完备的(幸运的是,在Python中,我们仍然可以在lambda内部突破这种限制)。我觉得lambdas推崇这种风格的原因是:
这里有一个隐式的返回,即它们看起来像“应该”是函数。 它们是另一种更显式、更可读、更可重用和更通用的机制——方法——的状态隐藏机制的替代方案。
我努力编写无lambda的Python,并在看到lambdas时删除lambdas。我认为如果没有lambdas, Python将是一种更好的语言,但这只是我的个人观点。
lambdas在GUI编程中非常有用。例如,假设您正在创建一组按钮,并且希望使用单个参数化回调,而不是每个按钮使用唯一的回调。Lambda让你轻松完成:
for value in ["one","two","three"]:
b = tk.Button(label=value, command=lambda arg=value: my_callback(arg))
b.pack()
(注意:虽然这个问题是专门问lambda的,但你也可以使用functools。以获得相同类型的结果)
另一种方法是为每个按钮创建单独的回调,这可能导致重复的代码。
我可以给你们一个我需要的例子。我正在制作一个图形程序,其中使用右键单击文件并为其分配三个选项之一。事实证明,在Tkinter(我在其中编写的GUI接口程序)中,当有人按下按钮时,它不能被分配给接受参数的命令。所以如果我选择了其中一个选项并希望我选择的结果是:
print 'hi there'
那没什么大不了的。但是如果我需要我的选择有一个特定的细节。例如,如果我选择选项A,它会调用一个函数,该函数接受依赖于选项A、B或C的一些参数,TKinter不支持这一点。拉姆达是唯一的选择,实际上…
使用lambdas的一个有用的例子是提高长列表推导式的可读性。 在这个例子中,loop_dic是为了清晰起见的缩写,但是假设loop_dic非常长。如果你只是使用一个包含i的普通值,而不是该值的lambda版本,你会得到一个NameError。
>>> lis = [{"name": "Peter"}, {"name": "Josef"}]
>>> loop_dic = lambda i: {"name": i["name"] + " Wallace" }
>>> new_lis = [loop_dic(i) for i in lis]
>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]
而不是
>>> lis = [{"name": "Peter"}, {"name": "Josef"}]
>>> new_lis = [{"name": i["name"] + " Wallace"} for i in lis]
>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]
Lambdas实际上是非常强大的构造,它源于函数式编程的思想,而且在Python的近期内,它绝不可能被轻易地修改、重新定义或删除。它们可以帮助您编写更强大的代码,因为它允许您将函数作为参数传递,因此函数是一等公民。
Lambdas确实容易让人困惑,但一旦获得了扎实的理解,你就可以写出像这样干净优雅的代码:
squared = map(lambda x: x*x, [1, 2, 3, 4, 5])
上面的代码行返回列表中数字的平方的列表。当然,你也可以这样做:
def square(x):
return x*x
squared = map(square, [1, 2, 3, 4, 5])
显然,前一种代码更短,如果您打算只在一个地方使用map函数(或任何以函数作为参数的类似函数),则尤其如此。这也使代码更加直观和优雅。
另外,正如@David Zaslavsky在他的回答中提到的,列表推导并不总是正确的方法,尤其是当你的列表必须从一些晦涩的数学方法中获取值时。
从更实际的角度来看,lambdas最近对我来说最大的优势之一是在GUI和事件驱动编程方面。如果你看一下Tkinter中的回调,它们所接受的参数就是触发它们的事件。如。
def define_bindings(widget):
widget.bind("<Button-1>", do-something-cool)
def do-something-cool(event):
#Your code to execute on the event trigger
现在如果你有一些论点要通过呢?简单到传递2个参数来存储鼠标单击的坐标。你可以简单地这样做:
def main():
# define widgets and other imp stuff
x, y = None, None
widget.bind("<Button-1>", lambda event: do-something-cool(x, y))
def do-something-cool(event, x, y):
x = event.x
y = event.y
#Do other cool stuff
现在,您可以争辩说这可以使用全局变量来完成,但是,如果全局变量只用于一个特定的位置,您真的想要担心内存管理和泄漏吗?那只是糟糕的编程风格。
简而言之,lambdas是很棒的,永远不应该被低估。尽管Python lambdas与LISP lambdas不同(后者更强大),但您确实可以用它们做很多神奇的事情。
我使用lambdas来避免代码重复。这样函数就容易理解了 例如:
def a_func()
...
if some_conditon:
...
call_some_big_func(arg1, arg2, arg3, arg4...)
else
...
call_some_big_func(arg1, arg2, arg3, arg4...)
我用一个临时变量替换它
def a_func()
...
call_big_f = lambda args_that_change: call_some_big_func(arg1, arg2, arg3, args_that_change)
if some_conditon:
...
call_big_f(argX)
else
...
call_big_f(argY)
函数这是一种非官僚化的创建函数的方法。
就是这样。例如,假设你有一个主要函数,需要对值平方。我们来看看传统的方法和的方法
传统的方法:
def main():
...
...
y = square(some_number)
...
return something
def square(x):
return x**2
方式:
def main():
...
square = lambda x: x**2
y = square(some_number)
return something
看到区别了吗?
Lambda函数非常适合用于列表,比如列表推导式或映射。事实上,列表理解是一种使用lambda来表达自己的“python”方式。例:
>>>a = [1,2,3,4]
>>>[x**2 for x in a]
[1,4,9,16]
让我们看看每个语法元素的含义:
[]:“给我一个清单” X **2:“使用这个新诞生的函数” 对于a中的x: "into each element in a"
很方便吧?创建这样的函数。让我们用lambda重写它:
>>> square = lambda x: x**2
>>> [square(s) for x in a]
[1,4,9,16]
现在让我们使用map,这是同样的东西,但更语言中立。Maps有两个参数:
(i)一个功能
(ii)可迭代对象
给你一个列表,其中每个元素它是应用于可迭代对象的每个元素的函数。
使用map,我们会得到:
>>> a = [1,2,3,4]
>>> squared_list = map(lambda x: x**2, a)
如果你掌握了lambdas和映射,你将拥有以简洁的方式操作数据的强大能力。Lambda函数既不晦涩,也不影响代码的清晰性。不要把难的东西和新东西混为一谈。一旦你开始使用它们,你就会发现非常清楚。
我使用lambda来创建包含参数的回调。在一行中编写lambda比编写一个方法来执行相同的功能更简洁。
例如:
import imported.module
def func():
return lambda: imported.module.method("foo", "bar")
相对于:
import imported.module
def func():
def cb():
return imported.module.method("foo", "bar")
return cb
我是一个python初学者,所以为了获得一个清晰的lambda概念,我将它与'for'循环进行了比较;在效率方面。 下面是代码(python 2.7) -
import time
start = time.time() # Measure the time taken for execution
def first():
squares = map(lambda x: x**2, range(10))
# ^ Lambda
end = time.time()
elapsed = end - start
print elapsed + ' seconds'
return elapsed # gives 0.0 seconds
def second():
lst = []
for i in range(10):
lst.append(i**2)
# ^ a 'for' loop
end = time.time()
elapsed = end - start
print elapsed + ' seconds'
return elapsed # gives 0.0019998550415 seconds.
print abs(second() - first()) # Gives 0.0019998550415 seconds!(duh)