我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?

我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。


当前回答

I started reading David Mertz's book today 'Text Processing in Python.' While he has a fairly terse description of Lambda's the examples in the first chapter combined with the explanation in Appendix A made them jump off the page for me (finally) and all of a sudden I understood their value. That is not to say his explanation will work for you and I am still at the discovery stage so I will not attempt to add to these responses other than the following: I am new to Python I am new to OOP Lambdas were a struggle for me Now that I read Mertz, I think I get them and I see them as very useful as I think they allow a cleaner approach to programming.

He reproduces the Zen of Python, one line of which is Simple is better than complex. As a non-OOP programmer reading code with lambdas (and until last week list comprehensions) I have thought-This is simple?. I finally realized today that actually these features make the code much more readable, and understandable than the alternative-which is invariably a loop of some sort. I also realized that like financial statements-Python was not designed for the novice user, rather it is designed for the user that wants to get educated. I can't believe how powerful this language is. When it dawned on me (finally) the purpose and value of lambdas I wanted to rip up about 30 programs and start over putting in lambdas where appropriate.

其他回答

我经常使用它,主要是作为空对象或将参数部分绑定到函数。

下面是一些例子:

实现空对象模式:

{
    DATA_PACKET: self.handle_data_packets
    NET_PACKET: self.handle_hardware_packets
}.get(packet_type, lambda x : None)(payload)

对于参数绑定:

假设我有以下API

def dump_hex(file, var)
    # some code
    pass

class X(object):
    #...
    def packet_received(data):
        # some kind of preprocessing
        self.callback(data)
    #...

然后,当我不想快速转储接收到的数据到一个文件,我这样做:

dump_file = file('hex_dump.txt','w')
X.callback = lambda (x): dump_hex(dump_file, x)
...
dump_file.close()

我刚开始学习Python,然后一头栽进Lambda——这花了我一段时间才弄明白。

请注意,这不是对任何事情的谴责。每个人都有不容易得到的东西。

lambda是那些在现实生活中应该被遗忘的“有趣”语言项目之一吗?

No.

我相信有一些边缘情况可能需要它,但考虑到它的模糊性,

它并不晦涩。在我过去工作过的两个团队中,每个人都一直在使用这个功能。

它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)

除了几年前修复闭包语义之外,我还没有看到在Python中重新定义它的严肃建议。

编码清晰度的降低——应该避免吗?

如果你用对了,也不会不太清楚。相反,拥有更多可用的语言结构可以增加清晰度。

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值……有点像技术人员的表演技巧,但维护程序员的噩梦。

就像缓冲区溢出?哇。如果您认为lambda是一个“维护噩梦”,我无法想象您将如何使用它。

我使用lambdas来避免代码重复。这样函数就容易理解了 例如:

def a_func()
  ...
  if some_conditon:
     ...
     call_some_big_func(arg1, arg2, arg3, arg4...)
  else
     ...
     call_some_big_func(arg1, arg2, arg3, arg4...)

我用一个临时变量替换它

def a_func()
  ...
  call_big_f = lambda args_that_change: call_some_big_func(arg1, arg2, arg3, args_that_change)
  if some_conditon:
     ...
     call_big_f(argX)
  else
     ...
     call_big_f(argY)

Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。

以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。

我是一个python初学者,所以为了获得一个清晰的lambda概念,我将它与'for'循环进行了比较;在效率方面。 下面是代码(python 2.7) -

import time
start = time.time() # Measure the time taken for execution

def first():
    squares = map(lambda x: x**2, range(10))
    # ^ Lambda
    end = time.time()
    elapsed = end - start
    print elapsed + ' seconds'
    return elapsed # gives 0.0 seconds

def second():
    lst = []
    for i in range(10):
        lst.append(i**2)
    # ^ a 'for' loop
    end = time.time()
    elapsed = end - start
    print elapsed + ' seconds'
    return elapsed # gives 0.0019998550415 seconds.

print abs(second() - first()) # Gives 0.0019998550415 seconds!(duh)