我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
当前回答
I started reading David Mertz's book today 'Text Processing in Python.' While he has a fairly terse description of Lambda's the examples in the first chapter combined with the explanation in Appendix A made them jump off the page for me (finally) and all of a sudden I understood their value. That is not to say his explanation will work for you and I am still at the discovery stage so I will not attempt to add to these responses other than the following: I am new to Python I am new to OOP Lambdas were a struggle for me Now that I read Mertz, I think I get them and I see them as very useful as I think they allow a cleaner approach to programming.
He reproduces the Zen of Python, one line of which is Simple is better than complex. As a non-OOP programmer reading code with lambdas (and until last week list comprehensions) I have thought-This is simple?. I finally realized today that actually these features make the code much more readable, and understandable than the alternative-which is invariably a loop of some sort. I also realized that like financial statements-Python was not designed for the novice user, rather it is designed for the user that wants to get educated. I can't believe how powerful this language is. When it dawned on me (finally) the purpose and value of lambdas I wanted to rip up about 30 programs and start over putting in lambdas where appropriate.
其他回答
我经常使用它,主要是作为空对象或将参数部分绑定到函数。
下面是一些例子:
实现空对象模式:
{
DATA_PACKET: self.handle_data_packets
NET_PACKET: self.handle_hardware_packets
}.get(packet_type, lambda x : None)(payload)
对于参数绑定:
假设我有以下API
def dump_hex(file, var)
# some code
pass
class X(object):
#...
def packet_received(data):
# some kind of preprocessing
self.callback(data)
#...
然后,当我不想快速转储接收到的数据到一个文件,我这样做:
dump_file = file('hex_dump.txt','w')
X.callback = lambda (x): dump_hex(dump_file, x)
...
dump_file.close()
我刚开始学习Python,然后一头栽进Lambda——这花了我一段时间才弄明白。
请注意,这不是对任何事情的谴责。每个人都有不容易得到的东西。
lambda是那些在现实生活中应该被遗忘的“有趣”语言项目之一吗?
No.
我相信有一些边缘情况可能需要它,但考虑到它的模糊性,
它并不晦涩。在我过去工作过的两个团队中,每个人都一直在使用这个功能。
它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)
除了几年前修复闭包语义之外,我还没有看到在Python中重新定义它的严肃建议。
编码清晰度的降低——应该避免吗?
如果你用对了,也不会不太清楚。相反,拥有更多可用的语言结构可以增加清晰度。
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值……有点像技术人员的表演技巧,但维护程序员的噩梦。
就像缓冲区溢出?哇。如果您认为lambda是一个“维护噩梦”,我无法想象您将如何使用它。
我使用lambdas来避免代码重复。这样函数就容易理解了 例如:
def a_func()
...
if some_conditon:
...
call_some_big_func(arg1, arg2, arg3, arg4...)
else
...
call_some_big_func(arg1, arg2, arg3, arg4...)
我用一个临时变量替换它
def a_func()
...
call_big_f = lambda args_that_change: call_some_big_func(arg1, arg2, arg3, args_that_change)
if some_conditon:
...
call_big_f(argX)
else
...
call_big_f(argY)
Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。
以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。
我是一个python初学者,所以为了获得一个清晰的lambda概念,我将它与'for'循环进行了比较;在效率方面。 下面是代码(python 2.7) -
import time
start = time.time() # Measure the time taken for execution
def first():
squares = map(lambda x: x**2, range(10))
# ^ Lambda
end = time.time()
elapsed = end - start
print elapsed + ' seconds'
return elapsed # gives 0.0 seconds
def second():
lst = []
for i in range(10):
lst.append(i**2)
# ^ a 'for' loop
end = time.time()
elapsed = end - start
print elapsed + ' seconds'
return elapsed # gives 0.0019998550415 seconds.
print abs(second() - first()) # Gives 0.0019998550415 seconds!(duh)