我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
当前回答
我可以给你们一个我需要的例子。我正在制作一个图形程序,其中使用右键单击文件并为其分配三个选项之一。事实证明,在Tkinter(我在其中编写的GUI接口程序)中,当有人按下按钮时,它不能被分配给接受参数的命令。所以如果我选择了其中一个选项并希望我选择的结果是:
print 'hi there'
那没什么大不了的。但是如果我需要我的选择有一个特定的细节。例如,如果我选择选项A,它会调用一个函数,该函数接受依赖于选项A、B或C的一些参数,TKinter不支持这一点。拉姆达是唯一的选择,实际上…
其他回答
在Python中,lambda只是内联定义函数的一种方式,
a = lambda x: x + 1
print a(1)
和. .
def a(x): return x + 1
print a(1)
..是完全一样的。
你可以用lambda做任何常规函数做不到的事情——Python函数和其他任何东西一样都是对象,lambdas只是定义一个函数:
>>> a = lambda x: x + 1
>>> type(a)
<type 'function'>
老实说,我认为lambda关键字在python中是多余的——我从来没有需要使用它们(或者见过使用它们的地方,常规函数、列表理解或许多内置函数中的一个本可以更好地使用)。
对于一个完全随机的例子,摘自文章“Python的lambda被破坏了!”:
要查看lambda是如何被破坏的,请尝试生成一个函数fs=[f0,…,f9]其中fi(n)=i+n。第一次尝试: >>> fs = [(lambda n: I + n) for I in range(10)] > > > fs [3] (4) 13
我想说的是,即使这样确实有效,它也太可怕了,而且是“非python化的”,同样的功能可以用无数其他方式来编写,例如:
>>> n = 4
>>> [i + n for i in range(10)]
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
是的,这是不一样的,但我从未见过需要在列表中生成一组lambda函数的原因。这在其他语言中可能是有意义的,但Python不是Haskell(或Lisp,或…)
请注意,我们可以使用lambda,仍然可以达到预期的效果 结果如下: >>> fs = [(lambda n,i=i: i + n) for i in range(10)] > > > fs [3] (4) 7
编辑:
在一些情况下lambda是有用的,例如在PyQt应用程序中连接信号时,它通常很方便,像这样:
w = PyQt4.QtGui.QLineEdit()
w.textChanged.connect(lambda event: dothing())
只是执行w.textChanged.connect(dothing)将使用额外的事件参数调用dothing方法并导致错误。使用lambda意味着我们可以整齐地删除参数,而不必定义包装函数。
我怀疑lambda不会消失。 请参阅Guido关于最终放弃尝试删除它的帖子。也请参阅冲突概要。
你可以看看这篇文章,了解更多Python函数特性背后的交易历史: http://python-history.blogspot.com/2009/04/origins-of-pythons-functional-features.html
奇怪的是,最初引入lambda和其他函数特性的map、filter和reduce函数在很大程度上已经被列表推导式和生成器表达式所取代。事实上,在Python 3.0中,reduce函数已从内置函数列表中删除。(但是,没有必要投诉lambda、map或filter的删除:它们被保留了。: -)
我个人的意见是:就清晰度而言,lambda值不了多少。通常有一个更清晰的不包含的解。
我经常使用它,主要是作为空对象或将参数部分绑定到函数。
下面是一些例子:
实现空对象模式:
{
DATA_PACKET: self.handle_data_packets
NET_PACKET: self.handle_hardware_packets
}.get(packet_type, lambda x : None)(payload)
对于参数绑定:
假设我有以下API
def dump_hex(file, var)
# some code
pass
class X(object):
#...
def packet_received(data):
# some kind of preprocessing
self.callback(data)
#...
然后,当我不想快速转储接收到的数据到一个文件,我这样做:
dump_file = file('hex_dump.txt','w')
X.callback = lambda (x): dump_hex(dump_file, x)
...
dump_file.close()
你说的是lambda表达式吗?就像
lambda x: x**2 + 2*x - 5
这些东西其实很有用。Python支持一种称为函数式编程的编程风格,在这种编程风格中,您可以将函数传递给其他函数来执行某些操作。例子:
mult3 = filter(lambda x: x % 3 == 0, [1, 2, 3, 4, 5, 6, 7, 8, 9])
将mult3设置为[3,6,9],即原始列表中3的倍数的元素。这句话更短(有人可能会说,更清楚)
def filterfunc(x):
return x % 3 == 0
mult3 = filter(filterfunc, [1, 2, 3, 4, 5, 6, 7, 8, 9])
当然,在这个特殊的情况下,你可以做同样的事情作为一个列表推导:
mult3 = [x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9] if x % 3 == 0]
(甚至作为range(3,10,3)),但还有许多其他更复杂的用例,在这些用例中,您不能使用列表推导式,lambda函数可能是写出一些东西的最短方法。
Returning a function from another function >>> def transform(n): ... return lambda x: x + n ... >>> f = transform(3) >>> f(4) 7 This is often used to create function wrappers, such as Python's decorators. Combining elements of an iterable sequence with reduce() >>> reduce(lambda a, b: '{}, {}'.format(a, b), [1, 2, 3, 4, 5, 6, 7, 8, 9]) '1, 2, 3, 4, 5, 6, 7, 8, 9' Sorting by an alternate key >>> sorted([1, 2, 3, 4, 5, 6, 7, 8, 9], key=lambda x: abs(5-x)) [5, 4, 6, 3, 7, 2, 8, 1, 9]
我经常使用lambda函数。我花了一段时间来适应它们,但最终我明白了它们是语言中非常有价值的一部分。
lambda是处理高阶函数的非常重要的抽象机制的一部分。为了正确理解它的价值,请观看Abelson和Sussman的高质量课程,并阅读《SICP》一书
这些都是与现代软件业务相关的问题,并且变得越来越流行。