我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?

我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。


当前回答

我可以给你们一个我需要的例子。我正在制作一个图形程序,其中使用右键单击文件并为其分配三个选项之一。事实证明,在Tkinter(我在其中编写的GUI接口程序)中,当有人按下按钮时,它不能被分配给接受参数的命令。所以如果我选择了其中一个选项并希望我选择的结果是:

print 'hi there'

那没什么大不了的。但是如果我需要我的选择有一个特定的细节。例如,如果我选择选项A,它会调用一个函数,该函数接受依赖于选项A、B或C的一些参数,TKinter不支持这一点。拉姆达是唯一的选择,实际上…

其他回答

Lambdas实际上是非常强大的构造,它源于函数式编程的思想,而且在Python的近期内,它绝不可能被轻易地修改、重新定义或删除。它们可以帮助您编写更强大的代码,因为它允许您将函数作为参数传递,因此函数是一等公民。

Lambdas确实容易让人困惑,但一旦获得了扎实的理解,你就可以写出像这样干净优雅的代码:

squared = map(lambda x: x*x, [1, 2, 3, 4, 5])

上面的代码行返回列表中数字的平方的列表。当然,你也可以这样做:

def square(x):
    return x*x

squared = map(square, [1, 2, 3, 4, 5])

显然,前一种代码更短,如果您打算只在一个地方使用map函数(或任何以函数作为参数的类似函数),则尤其如此。这也使代码更加直观和优雅。

另外,正如@David Zaslavsky在他的回答中提到的,列表推导并不总是正确的方法,尤其是当你的列表必须从一些晦涩的数学方法中获取值时。

从更实际的角度来看,lambdas最近对我来说最大的优势之一是在GUI和事件驱动编程方面。如果你看一下Tkinter中的回调,它们所接受的参数就是触发它们的事件。如。

def define_bindings(widget):
    widget.bind("<Button-1>", do-something-cool)

def do-something-cool(event):
    #Your code to execute on the event trigger

现在如果你有一些论点要通过呢?简单到传递2个参数来存储鼠标单击的坐标。你可以简单地这样做:

def main():
    # define widgets and other imp stuff
    x, y = None, None
    widget.bind("<Button-1>", lambda event: do-something-cool(x, y))

def do-something-cool(event, x, y):
    x = event.x
    y = event.y
    #Do other cool stuff

现在,您可以争辩说这可以使用全局变量来完成,但是,如果全局变量只用于一个特定的位置,您真的想要担心内存管理和泄漏吗?那只是糟糕的编程风格。

简而言之,lambdas是很棒的,永远不应该被低估。尽管Python lambdas与LISP lambdas不同(后者更强大),但您确实可以用它们做很多神奇的事情。

我不能说python对lambda的具体实现,但一般来说lambda函数真的很方便。它们是函数式编程的核心技术(甚至是技术),在面向对象程序中也非常有用。对于某些类型的问题,它们是最好的解决方案,所以当然不应该忘记!

我建议你仔细阅读闭包和map函数(它链接到python文档,但它存在于几乎所有支持函数结构的语言中),看看它为什么有用。

我使用lambdas来避免代码重复。这样函数就容易理解了 例如:

def a_func()
  ...
  if some_conditon:
     ...
     call_some_big_func(arg1, arg2, arg3, arg4...)
  else
     ...
     call_some_big_func(arg1, arg2, arg3, arg4...)

我用一个临时变量替换它

def a_func()
  ...
  call_big_f = lambda args_that_change: call_some_big_func(arg1, arg2, arg3, args_that_change)
  if some_conditon:
     ...
     call_big_f(argX)
  else
     ...
     call_big_f(argY)

只是函数的一种奇特说法。除了它的名字,它没有什么晦涩、吓人或神秘的地方。当你读到下面这行,在脑海中用函数替换lambda:

>>> f = lambda x: x + 1
>>> f(3)
4

它只是定义了一个关于x的函数。其他一些语言,比如R,显式地说:

> f = function(x) { x + 1 }
> f(3)
4

你看到了什么?这是编程中最自然的事情之一。

如上所述,Python中的lambda操作符定义了一个匿名函数,而Python中的函数是闭包。重要的是不要将闭包的概念与操作符lambda混淆,后者对它们来说只是句法上的美沙酮。

当我几年前开始使用Python时,我经常使用lambda,认为它们很酷,还有列表推导式。然而,我编写并维护了一个用Python编写的大型网站,其中有几千个功能点。我从经验中了解到,lambdas可能可以用来创建原型,但除了节省一些键,它不能提供任何内联函数(命名闭包),有时也不能。

基本上这可以归结为几点:

it is easier to read software that is explicitly written using meaningful names. Anonymous closures by definition cannot have a meaningful name, as they have no name. This brevity seems, for some reason, to also infect lambda parameters, hence we often see examples like lambda x: x+1 it is easier to reuse named closures, as they can be referred to by name more than once, when there is a name to refer to them by. it is easier to debug code that is using named closures instead of lambdas, because the name will appear in tracebacks, and around the error.

这就有足够的理由将它们集中起来,并将它们转换为命名闭包。然而,我对匿名闭包还有另外两个不满。

第一个不满是,它们只是又一个不必要的关键字,把语言弄得乱七八糟。

第二个不满是更深层次的,在范式层面上,也就是说,我不喜欢他们提倡一种函数式编程风格,因为这种风格不如消息传递、面向对象或过程式风格灵活,因为lambda微积分不是图灵完备的(幸运的是,在Python中,我们仍然可以在lambda内部突破这种限制)。我觉得lambdas推崇这种风格的原因是:

这里有一个隐式的返回,即它们看起来像“应该”是函数。 它们是另一种更显式、更可读、更可重用和更通用的机制——方法——的状态隐藏机制的替代方案。

我努力编写无lambda的Python,并在看到lambdas时删除lambdas。我认为如果没有lambdas, Python将是一种更好的语言,但这只是我的个人观点。