我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
当前回答
你可以用lambda做的任何事情,都可以用命名函数或列表和生成器表达式做得更好。
因此,在大多数情况下,在任何情况下您都应该只使用其中一种(可能除了在交互式解释器中编写的草稿代码)。
其他回答
Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。
以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。
I started reading David Mertz's book today 'Text Processing in Python.' While he has a fairly terse description of Lambda's the examples in the first chapter combined with the explanation in Appendix A made them jump off the page for me (finally) and all of a sudden I understood their value. That is not to say his explanation will work for you and I am still at the discovery stage so I will not attempt to add to these responses other than the following: I am new to Python I am new to OOP Lambdas were a struggle for me Now that I read Mertz, I think I get them and I see them as very useful as I think they allow a cleaner approach to programming.
He reproduces the Zen of Python, one line of which is Simple is better than complex. As a non-OOP programmer reading code with lambdas (and until last week list comprehensions) I have thought-This is simple?. I finally realized today that actually these features make the code much more readable, and understandable than the alternative-which is invariably a loop of some sort. I also realized that like financial statements-Python was not designed for the novice user, rather it is designed for the user that wants to get educated. I can't believe how powerful this language is. When it dawned on me (finally) the purpose and value of lambdas I wanted to rip up about 30 programs and start over putting in lambdas where appropriate.
函数这是一种非官僚化的创建函数的方法。
就是这样。例如,假设你有一个主要函数,需要对值平方。我们来看看传统的方法和的方法
传统的方法:
def main():
...
...
y = square(some_number)
...
return something
def square(x):
return x**2
方式:
def main():
...
square = lambda x: x**2
y = square(some_number)
return something
看到区别了吗?
Lambda函数非常适合用于列表,比如列表推导式或映射。事实上,列表理解是一种使用lambda来表达自己的“python”方式。例:
>>>a = [1,2,3,4]
>>>[x**2 for x in a]
[1,4,9,16]
让我们看看每个语法元素的含义:
[]:“给我一个清单” X **2:“使用这个新诞生的函数” 对于a中的x: "into each element in a"
很方便吧?创建这样的函数。让我们用lambda重写它:
>>> square = lambda x: x**2
>>> [square(s) for x in a]
[1,4,9,16]
现在让我们使用map,这是同样的东西,但更语言中立。Maps有两个参数:
(i)一个功能
(ii)可迭代对象
给你一个列表,其中每个元素它是应用于可迭代对象的每个元素的函数。
使用map,我们会得到:
>>> a = [1,2,3,4]
>>> squared_list = map(lambda x: x**2, a)
如果你掌握了lambdas和映射,你将拥有以简洁的方式操作数据的强大能力。Lambda函数既不晦涩,也不影响代码的清晰性。不要把难的东西和新东西混为一谈。一旦你开始使用它们,你就会发现非常清楚。
使用lambdas的一个有用的例子是提高长列表推导式的可读性。 在这个例子中,loop_dic是为了清晰起见的缩写,但是假设loop_dic非常长。如果你只是使用一个包含i的普通值,而不是该值的lambda版本,你会得到一个NameError。
>>> lis = [{"name": "Peter"}, {"name": "Josef"}]
>>> loop_dic = lambda i: {"name": i["name"] + " Wallace" }
>>> new_lis = [loop_dic(i) for i in lis]
>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]
而不是
>>> lis = [{"name": "Peter"}, {"name": "Josef"}]
>>> new_lis = [{"name": i["name"] + " Wallace"} for i in lis]
>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]
两行总结:
闭包:非常有用。学习它们,利用它们,热爱它们。 Python的lambda关键字:不必要,偶尔有用。如果你发现自己在用它做任何复杂的事情,把它放在一边,定义一个真正的函数。