我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
当前回答
只是函数的一种奇特说法。除了它的名字,它没有什么晦涩、吓人或神秘的地方。当你读到下面这行,在脑海中用函数替换lambda:
>>> f = lambda x: x + 1
>>> f(3)
4
它只是定义了一个关于x的函数。其他一些语言,比如R,显式地说:
> f = function(x) { x + 1 }
> f(3)
4
你看到了什么?这是编程中最自然的事情之一。
其他回答
Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。
以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。
只是函数的一种奇特说法。除了它的名字,它没有什么晦涩、吓人或神秘的地方。当你读到下面这行,在脑海中用函数替换lambda:
>>> f = lambda x: x + 1
>>> f(3)
4
它只是定义了一个关于x的函数。其他一些语言,比如R,显式地说:
> f = function(x) { x + 1 }
> f(3)
4
你看到了什么?这是编程中最自然的事情之一。
lambda是处理高阶函数的非常重要的抽象机制的一部分。为了正确理解它的价值,请观看Abelson和Sussman的高质量课程,并阅读《SICP》一书
这些都是与现代软件业务相关的问题,并且变得越来越流行。
函数这是一种非官僚化的创建函数的方法。
就是这样。例如,假设你有一个主要函数,需要对值平方。我们来看看传统的方法和的方法
传统的方法:
def main():
...
...
y = square(some_number)
...
return something
def square(x):
return x**2
方式:
def main():
...
square = lambda x: x**2
y = square(some_number)
return something
看到区别了吗?
Lambda函数非常适合用于列表,比如列表推导式或映射。事实上,列表理解是一种使用lambda来表达自己的“python”方式。例:
>>>a = [1,2,3,4]
>>>[x**2 for x in a]
[1,4,9,16]
让我们看看每个语法元素的含义:
[]:“给我一个清单” X **2:“使用这个新诞生的函数” 对于a中的x: "into each element in a"
很方便吧?创建这样的函数。让我们用lambda重写它:
>>> square = lambda x: x**2
>>> [square(s) for x in a]
[1,4,9,16]
现在让我们使用map,这是同样的东西,但更语言中立。Maps有两个参数:
(i)一个功能
(ii)可迭代对象
给你一个列表,其中每个元素它是应用于可迭代对象的每个元素的函数。
使用map,我们会得到:
>>> a = [1,2,3,4]
>>> squared_list = map(lambda x: x**2, a)
如果你掌握了lambdas和映射,你将拥有以简洁的方式操作数据的强大能力。Lambda函数既不晦涩,也不影响代码的清晰性。不要把难的东西和新东西混为一谈。一旦你开始使用它们,你就会发现非常清楚。
Lambda是一个过程构造函数。你可以在运行时合成程序,尽管Python的lambda不是很强大。请注意,很少有人理解这种编程。