如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
对于Python 3.8+,使用统计信息。浮点数稳定性的平均值。(快)。
对于Python 3.4+,使用统计信息。平均数值稳定性与浮子。(慢)。
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import statistics
statistics.mean(xs) # = 20.11111111111111
对于较旧版本的Python 3,请使用
sum(xs) / len(xs)
对于Python 2,将len转换为浮点数以获得浮点除法:
sum(xs) / float(len(xs))
当Python有一个完美的cromulent sum()函数时,为什么要使用reduce()呢?
print sum(l) / float(len(l))
(float()在Python 2中强制Python执行浮点除法是必需的。)
print reduce(lambda x, y: x + y, l)/(len(l)*1.0)
或者像之前写的那样
sum(l)/(len(l)*1.0)
1.0是为了确保你得到一个浮点除法
为了使用reduce来获取运行平均值,您需要跟踪到目前为止所看到的元素总数。因为它不是列表中的一个普通元素,所以还必须向reduce传递一个要折叠成的额外参数。
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> running_average = reduce(lambda aggr, elem: (aggr[0] + elem, aggr[1]+1), l, (0.0,0))
>>> running_average[0]
(181.0, 9)
>>> running_average[0]/running_average[1]
20.111111111111111
Sum (l) / float(len(l))是正确答案,但为了完整起见,你可以用一个reduce来计算平均值:
>>> reduce(lambda x, y: x + y / float(len(l)), l, 0)
20.111111111111114
注意,这可能会导致轻微的舍入误差:
>>> sum(l) / float(len(l))
20.111111111111111
使用numpy.mean:
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import numpy as np
print(np.mean(xs))
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
l = map(float,l)
print '%.2f' %(sum(l)/len(l))
对于Python 3.4+,使用新的统计模块中的mean()来计算平均值:
from statistics import mean
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
mean(xs)
在Udacity的问题中,我也有一个类似的问题要解决。而不是一个内置的函数,我编码:
def list_mean(n):
summing = float(sum(n))
count = float(len(n))
if n == []:
return False
return float(summing/count)
比平时长得多,但对于初学者来说,这是相当具有挑战性的。
两者都可以在一个整数或至少10个十进制值上给出接近的值。但如果你真的考虑长浮动值,这两者可能是不同的。方法可以根据你想要达到的目标而有所不同。
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> print reduce(lambda x, y: x + y, l) / len(l)
20
>>> sum(l)/len(l)
20
浮动值
>>> print reduce(lambda x, y: x + y, l) / float(len(l))
20.1111111111
>>> print sum(l)/float(len(l))
20.1111111111
@Andrew Clark的说法是正确的。
我尝试使用上面的选项,但没有工作。 试试这个:
from statistics import mean
n = [11, 13, 15, 17, 19]
print(n)
print(mean(n))
使用过python 3.5
结合上面的几个答案,我提出了以下与reduce一起工作的方法,并且不假设你在reduce函数中有L可用:
from operator import truediv
L = [15, 18, 2, 36, 12, 78, 5, 6, 9]
def sum_and_count(x, y):
try:
return (x[0] + y, x[1] + 1)
except TypeError:
return (x + y, 2)
truediv(*reduce(sum_and_count, L))
# prints
20.11111111111111
作为初学者,我只是编写了这个代码:
L = [15, 18, 2, 36, 12, 78, 5, 6, 9]
total = 0
def average(numbers):
total = sum(numbers)
total = float(total)
return total / len(numbers)
print average(L)
我想补充另一种方法
import itertools,operator
list(itertools.accumulate(l,operator.add)).pop(-1) / len(l)
numbers = [0,1,2,3]
numbers[0] = input("Please enter a number")
numbers[1] = input("Please enter a second number")
numbers[2] = input("Please enter a third number")
numbers[3] = input("Please enter a fourth number")
print (numbers)
print ("Finding the Avarage")
avarage = int(numbers[0]) + int(numbers[1]) + int(numbers[2]) + int(numbers [3]) / 4
print (avarage)
假设
x = [
[-5.01,-5.43,1.08,0.86,-2.67,4.94,-2.51,-2.25,5.56,1.03],
[-8.12,-3.48,-5.52,-3.78,0.63,3.29,2.09,-2.13,2.86,-3.33],
[-3.68,-3.54,1.66,-4.11,7.39,2.08,-2.59,-6.94,-2.26,4.33]
]
你可以注意到x的维数是3*10如果你需要得到每一行的平均值,你可以输入这个
theMean = np.mean(x1,axis=1)
不要忘记将numpy导入为np
如果您使用的是python >= 3.4,则有一个统计库
https://docs.python.org/3/library/statistics.html
你可以像这样使用它的mean方法。让我们假设你有一个数字列表,你想找到平均值:-
list = [11, 13, 12, 15, 17]
import statistics as s
s.mean(list)
它还有其他方法,比如stdev,方差,模式,调和平均值,中位数等,这些方法都非常有用。
如果你想要的不仅仅是平均值(又名平均),你可以看看scipy的统计:
from scipy import stats
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(stats.describe(l))
# DescribeResult(nobs=9, minmax=(2, 78), mean=20.11111111111111,
# variance=572.3611111111111, skewness=1.7791785448425341,
# kurtosis=1.9422716419666397)
或者使用熊猫系列。意思是方法:
pd.Series(sequence).mean()
演示:
>>> import pandas as pd
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> pd.Series(l).mean()
20.11111111111111
>>>
从文档中可以看出:
系列。意思是(axis= no, skipna= no, level= no, numic_only = no, kwargs
这里是这个的文档:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.mean.html
整个文档:
https://pandas.pydata.org/pandas-docs/stable/10min.html
在列表中求平均值 通过使用以下PYTHON代码:
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(sum(l)//len(l))
试着简单一点。
编辑:
我添加了另外两种获取列表平均值的方法(仅适用于Python 3.8+)。下面是我做的比较:
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
import math
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
def mean7():
return statistics.fmean(l)
def mean8():
return math.fsum(l) / len(l)
for func in [mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8 ]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
以下是我得到的结果:
mean1 took: 0.09751558300000002
mean2 took: 0.005496791999999973
mean3 took: 0.07754683299999998
mean4 took: 0.055743208000000044
mean5 took: 0.018134082999999968
mean6 took: 0.6663848750000001
mean7 took: 0.004305374999999945
mean8 took: 0.003203333000000086
有趣!看起来math.fsum(l) / len(l)是最快的方法,然后是statistics.fmean(l),然后是sum(l) / len(l)。好了!
感谢阿斯克勒庇俄斯为我展示了另外两种方式!
旧的回答:
就效率和速度而言,以下是我测试其他答案的结果:
# test mean caculation
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
for func in [mean1, mean2, mean3, mean4, mean5, mean6]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
结果是:
mean1 took: 0.17030245899968577
mean2 took: 0.002183011999932205
mean3 took: 0.09744236000005913
mean4 took: 0.07070840100004716
mean5 took: 0.022754742999950395
mean6 took: 1.6689282460001778
所以很明显赢家是: Sum (l) / len(l)
你可以为平均值,使用率做一个函数:
average(21,343,2983) # You can pass as many arguments as you want.
代码如下:
def average(*args):
total = 0
for num in args:
total+=num
return total/len(args)
*args允许任意数量的答案。
简单的解决方案是avmedii -lib
pip install avemedi_lib
而不是包括在你的剧本中
from avemedi_lib.functions import average, get_median, get_median_custom
test_even_array = [12, 32, 23, 43, 14, 44, 123, 15]
test_odd_array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# Getting average value of list items
print(average(test_even_array)) # 38.25
# Getting median value for ordered or unordered numbers list
print(get_median(test_even_array)) # 27.5
print(get_median(test_odd_array)) # 27.5
# You can use your own sorted and your count functions
a = sorted(test_even_array)
n = len(a)
print(get_median_custom(a, n)) # 27.5
享受。