如何在Python中找到列表的平均值?

[1, 2, 3, 4]  ⟶  2.5

当前回答

对于Python 3.8+,使用统计信息。浮点数稳定性的平均值。(快)。

对于Python 3.4+,使用统计信息。平均数值稳定性与浮子。(慢)。

xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]

import statistics
statistics.mean(xs)  # = 20.11111111111111

对于较旧版本的Python 3,请使用

sum(xs) / len(xs)

对于Python 2,将len转换为浮点数以获得浮点除法:

sum(xs) / float(len(xs))

其他回答

你可以为平均值,使用率做一个函数:

average(21,343,2983) # You can pass as many arguments as you want.

代码如下:

def average(*args):
    total = 0
    for num in args:
        total+=num
    return total/len(args)

*args允许任意数量的答案。

我尝试使用上面的选项,但没有工作。 试试这个:

from statistics import mean

n = [11, 13, 15, 17, 19]

print(n)
print(mean(n))

使用过python 3.5

Sum (l) / float(len(l))是正确答案,但为了完整起见,你可以用一个reduce来计算平均值:

>>> reduce(lambda x, y: x + y / float(len(l)), l, 0)
20.111111111111114

注意,这可能会导致轻微的舍入误差:

>>> sum(l) / float(len(l))
20.111111111111111

或者使用熊猫系列。意思是方法:

pd.Series(sequence).mean()

演示:

>>> import pandas as pd
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> pd.Series(l).mean()
20.11111111111111
>>> 

从文档中可以看出:

系列。意思是(axis= no, skipna= no, level= no, numic_only = no, kwargs

这里是这个的文档:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.mean.html

整个文档:

https://pandas.pydata.org/pandas-docs/stable/10min.html

为了使用reduce来获取运行平均值,您需要跟踪到目前为止所看到的元素总数。因为它不是列表中的一个普通元素,所以还必须向reduce传递一个要折叠成的额外参数。

>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> running_average = reduce(lambda aggr, elem: (aggr[0] + elem, aggr[1]+1), l, (0.0,0))
>>> running_average[0]
(181.0, 9)
>>> running_average[0]/running_average[1]
20.111111111111111