如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
当前回答
对于Python 3.8+,使用统计信息。浮点数稳定性的平均值。(快)。
对于Python 3.4+,使用统计信息。平均数值稳定性与浮子。(慢)。
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import statistics
statistics.mean(xs) # = 20.11111111111111
对于较旧版本的Python 3,请使用
sum(xs) / len(xs)
对于Python 2,将len转换为浮点数以获得浮点除法:
sum(xs) / float(len(xs))
其他回答
如果您使用的是python >= 3.4,则有一个统计库
https://docs.python.org/3/library/statistics.html
你可以像这样使用它的mean方法。让我们假设你有一个数字列表,你想找到平均值:-
list = [11, 13, 12, 15, 17]
import statistics as s
s.mean(list)
它还有其他方法,比如stdev,方差,模式,调和平均值,中位数等,这些方法都非常有用。
如果你想要的不仅仅是平均值(又名平均),你可以看看scipy的统计:
from scipy import stats
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(stats.describe(l))
# DescribeResult(nobs=9, minmax=(2, 78), mean=20.11111111111111,
# variance=572.3611111111111, skewness=1.7791785448425341,
# kurtosis=1.9422716419666397)
或者使用熊猫系列。意思是方法:
pd.Series(sequence).mean()
演示:
>>> import pandas as pd
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> pd.Series(l).mean()
20.11111111111111
>>>
从文档中可以看出:
系列。意思是(axis= no, skipna= no, level= no, numic_only = no, kwargs
这里是这个的文档:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.mean.html
整个文档:
https://pandas.pydata.org/pandas-docs/stable/10min.html
对于Python 3.8+,使用统计信息。浮点数稳定性的平均值。(快)。
对于Python 3.4+,使用统计信息。平均数值稳定性与浮子。(慢)。
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import statistics
statistics.mean(xs) # = 20.11111111111111
对于较旧版本的Python 3,请使用
sum(xs) / len(xs)
对于Python 2,将len转换为浮点数以获得浮点除法:
sum(xs) / float(len(xs))
编辑:
我添加了另外两种获取列表平均值的方法(仅适用于Python 3.8+)。下面是我做的比较:
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
import math
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
def mean7():
return statistics.fmean(l)
def mean8():
return math.fsum(l) / len(l)
for func in [mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8 ]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
以下是我得到的结果:
mean1 took: 0.09751558300000002
mean2 took: 0.005496791999999973
mean3 took: 0.07754683299999998
mean4 took: 0.055743208000000044
mean5 took: 0.018134082999999968
mean6 took: 0.6663848750000001
mean7 took: 0.004305374999999945
mean8 took: 0.003203333000000086
有趣!看起来math.fsum(l) / len(l)是最快的方法,然后是statistics.fmean(l),然后是sum(l) / len(l)。好了!
感谢阿斯克勒庇俄斯为我展示了另外两种方式!
旧的回答:
就效率和速度而言,以下是我测试其他答案的结果:
# test mean caculation
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
for func in [mean1, mean2, mean3, mean4, mean5, mean6]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
结果是:
mean1 took: 0.17030245899968577
mean2 took: 0.002183011999932205
mean3 took: 0.09744236000005913
mean4 took: 0.07070840100004716
mean5 took: 0.022754742999950395
mean6 took: 1.6689282460001778
所以很明显赢家是: Sum (l) / len(l)