如何在Python中找到列表的平均值?

[1, 2, 3, 4]  ⟶  2.5

当前回答

或者使用熊猫系列。意思是方法:

pd.Series(sequence).mean()

演示:

>>> import pandas as pd
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> pd.Series(l).mean()
20.11111111111111
>>> 

从文档中可以看出:

系列。意思是(axis= no, skipna= no, level= no, numic_only = no, kwargs

这里是这个的文档:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.mean.html

整个文档:

https://pandas.pydata.org/pandas-docs/stable/10min.html

其他回答

结合上面的几个答案,我提出了以下与reduce一起工作的方法,并且不假设你在reduce函数中有L可用:

from operator import truediv

L = [15, 18, 2, 36, 12, 78, 5, 6, 9]

def sum_and_count(x, y):
    try:
        return (x[0] + y, x[1] + 1)
    except TypeError:
        return (x + y, 2)

truediv(*reduce(sum_and_count, L))

# prints 
20.11111111111111

简单的解决方案是avmedii -lib

pip install avemedi_lib

而不是包括在你的剧本中

from avemedi_lib.functions import average, get_median, get_median_custom


test_even_array = [12, 32, 23, 43, 14, 44, 123, 15]
test_odd_array = [1, 2, 3, 4, 5, 6, 7, 8, 9]

# Getting average value of list items
print(average(test_even_array))  # 38.25

# Getting median value for ordered or unordered numbers list
print(get_median(test_even_array))  # 27.5
print(get_median(test_odd_array))  # 27.5

# You can use your own sorted and your count functions
a = sorted(test_even_array)
n = len(a)

print(get_median_custom(a, n))  # 27.5

享受。

而不是强制转换为float,你可以将0.0加到和:

def avg(l):
    return sum(l, 0.0) / len(l)

我尝试使用上面的选项,但没有工作。 试试这个:

from statistics import mean

n = [11, 13, 15, 17, 19]

print(n)
print(mean(n))

使用过python 3.5

如果你想要的不仅仅是平均值(又名平均),你可以看看scipy的统计:

from scipy import stats
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(stats.describe(l))

# DescribeResult(nobs=9, minmax=(2, 78), mean=20.11111111111111, 
# variance=572.3611111111111, skewness=1.7791785448425341, 
# kurtosis=1.9422716419666397)