如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
当前回答
当Python有一个完美的cromulent sum()函数时,为什么要使用reduce()呢?
print sum(l) / float(len(l))
(float()在Python 2中强制Python执行浮点除法是必需的。)
其他回答
编辑:
我添加了另外两种获取列表平均值的方法(仅适用于Python 3.8+)。下面是我做的比较:
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
import math
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
def mean7():
return statistics.fmean(l)
def mean8():
return math.fsum(l) / len(l)
for func in [mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8 ]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
以下是我得到的结果:
mean1 took: 0.09751558300000002
mean2 took: 0.005496791999999973
mean3 took: 0.07754683299999998
mean4 took: 0.055743208000000044
mean5 took: 0.018134082999999968
mean6 took: 0.6663848750000001
mean7 took: 0.004305374999999945
mean8 took: 0.003203333000000086
有趣!看起来math.fsum(l) / len(l)是最快的方法,然后是statistics.fmean(l),然后是sum(l) / len(l)。好了!
感谢阿斯克勒庇俄斯为我展示了另外两种方式!
旧的回答:
就效率和速度而言,以下是我测试其他答案的结果:
# test mean caculation
import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000
l = list(range(LIST_RANGE))
def mean1():
return statistics.mean(l)
def mean2():
return sum(l) / len(l)
def mean3():
return np.mean(l)
def mean4():
return np.array(l).mean()
def mean5():
return reduce(lambda x, y: x + y / float(len(l)), l, 0)
def mean6():
return pd.Series(l).mean()
for func in [mean1, mean2, mean3, mean4, mean5, mean6]:
print(f"{func.__name__} took: ", timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))
结果是:
mean1 took: 0.17030245899968577
mean2 took: 0.002183011999932205
mean3 took: 0.09744236000005913
mean4 took: 0.07070840100004716
mean5 took: 0.022754742999950395
mean6 took: 1.6689282460001778
所以很明显赢家是: Sum (l) / len(l)
你可以为平均值,使用率做一个函数:
average(21,343,2983) # You can pass as many arguments as you want.
代码如下:
def average(*args):
total = 0
for num in args:
total+=num
return total/len(args)
*args允许任意数量的答案。
使用numpy.mean:
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import numpy as np
print(np.mean(xs))
我尝试使用上面的选项,但没有工作。 试试这个:
from statistics import mean
n = [11, 13, 15, 17, 19]
print(n)
print(mean(n))
使用过python 3.5
结合上面的几个答案,我提出了以下与reduce一起工作的方法,并且不假设你在reduce函数中有L可用:
from operator import truediv
L = [15, 18, 2, 36, 12, 78, 5, 6, 9]
def sum_and_count(x, y):
try:
return (x[0] + y, x[1] + 1)
except TypeError:
return (x + y, 2)
truediv(*reduce(sum_and_count, L))
# prints
20.11111111111111