如何在Python中找到列表的平均值?

[1, 2, 3, 4]  ⟶  2.5

当前回答

简单的解决方案是avmedii -lib

pip install avemedi_lib

而不是包括在你的剧本中

from avemedi_lib.functions import average, get_median, get_median_custom


test_even_array = [12, 32, 23, 43, 14, 44, 123, 15]
test_odd_array = [1, 2, 3, 4, 5, 6, 7, 8, 9]

# Getting average value of list items
print(average(test_even_array))  # 38.25

# Getting median value for ordered or unordered numbers list
print(get_median(test_even_array))  # 27.5
print(get_median(test_odd_array))  # 27.5

# You can use your own sorted and your count functions
a = sorted(test_even_array)
n = len(a)

print(get_median_custom(a, n))  # 27.5

享受。

其他回答

为了使用reduce来获取运行平均值,您需要跟踪到目前为止所看到的元素总数。因为它不是列表中的一个普通元素,所以还必须向reduce传递一个要折叠成的额外参数。

>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> running_average = reduce(lambda aggr, elem: (aggr[0] + elem, aggr[1]+1), l, (0.0,0))
>>> running_average[0]
(181.0, 9)
>>> running_average[0]/running_average[1]
20.111111111111111

使用numpy.mean:

xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]

import numpy as np
print(np.mean(xs))

Sum (l) / float(len(l))是正确答案,但为了完整起见,你可以用一个reduce来计算平均值:

>>> reduce(lambda x, y: x + y / float(len(l)), l, 0)
20.111111111111114

注意,这可能会导致轻微的舍入误差:

>>> sum(l) / float(len(l))
20.111111111111111

编辑:

我添加了另外两种获取列表平均值的方法(仅适用于Python 3.8+)。下面是我做的比较:

import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
import math

LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000

l = list(range(LIST_RANGE))

def mean1():
    return statistics.mean(l)


def mean2():
    return sum(l) / len(l)


def mean3():
    return np.mean(l)


def mean4():
    return np.array(l).mean()


def mean5():
    return reduce(lambda x, y: x + y / float(len(l)), l, 0)

def mean6():
    return pd.Series(l).mean()


def mean7():
    return statistics.fmean(l)


def mean8():
    return math.fsum(l) / len(l)


for func in [mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8 ]:
    print(f"{func.__name__} took: ",  timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))

以下是我得到的结果:

mean1 took:  0.09751558300000002
mean2 took:  0.005496791999999973
mean3 took:  0.07754683299999998
mean4 took:  0.055743208000000044
mean5 took:  0.018134082999999968
mean6 took:  0.6663848750000001
mean7 took:  0.004305374999999945
mean8 took:  0.003203333000000086

有趣!看起来math.fsum(l) / len(l)是最快的方法,然后是statistics.fmean(l),然后是sum(l) / len(l)。好了!

感谢阿斯克勒庇俄斯为我展示了另外两种方式!


旧的回答:

就效率和速度而言,以下是我测试其他答案的结果:

# test mean caculation

import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd

LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000

l = list(range(LIST_RANGE))

def mean1():
    return statistics.mean(l)


def mean2():
    return sum(l) / len(l)


def mean3():
    return np.mean(l)


def mean4():
    return np.array(l).mean()


def mean5():
    return reduce(lambda x, y: x + y / float(len(l)), l, 0)

def mean6():
    return pd.Series(l).mean()



for func in [mean1, mean2, mean3, mean4, mean5, mean6]:
    print(f"{func.__name__} took: ",  timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))

结果是:

mean1 took:  0.17030245899968577
mean2 took:  0.002183011999932205
mean3 took:  0.09744236000005913
mean4 took:  0.07070840100004716
mean5 took:  0.022754742999950395
mean6 took:  1.6689282460001778

所以很明显赢家是: Sum (l) / len(l)

当Python有一个完美的cromulent sum()函数时,为什么要使用reduce()呢?

print sum(l) / float(len(l))

(float()在Python 2中强制Python执行浮点除法是必需的。)