如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
如何在Python中找到列表的平均值?
[1, 2, 3, 4] ⟶ 2.5
当前回答
使用numpy.mean:
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import numpy as np
print(np.mean(xs))
其他回答
为了使用reduce来获取运行平均值,您需要跟踪到目前为止所看到的元素总数。因为它不是列表中的一个普通元素,所以还必须向reduce传递一个要折叠成的额外参数。
>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> running_average = reduce(lambda aggr, elem: (aggr[0] + elem, aggr[1]+1), l, (0.0,0))
>>> running_average[0]
(181.0, 9)
>>> running_average[0]/running_average[1]
20.111111111111111
Sum (l) / float(len(l))是正确答案,但为了完整起见,你可以用一个reduce来计算平均值:
>>> reduce(lambda x, y: x + y / float(len(l)), l, 0)
20.111111111111114
注意,这可能会导致轻微的舍入误差:
>>> sum(l) / float(len(l))
20.111111111111111
在Udacity的问题中,我也有一个类似的问题要解决。而不是一个内置的函数,我编码:
def list_mean(n):
summing = float(sum(n))
count = float(len(n))
if n == []:
return False
return float(summing/count)
比平时长得多,但对于初学者来说,这是相当具有挑战性的。
使用numpy.mean:
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
import numpy as np
print(np.mean(xs))
如果你想要的不仅仅是平均值(又名平均),你可以看看scipy的统计:
from scipy import stats
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(stats.describe(l))
# DescribeResult(nobs=9, minmax=(2, 78), mean=20.11111111111111,
# variance=572.3611111111111, skewness=1.7791785448425341,
# kurtosis=1.9422716419666397)