如何在Python中找到列表的平均值?

[1, 2, 3, 4]  ⟶  2.5

当前回答

numbers = [0,1,2,3]

numbers[0] = input("Please enter a number")

numbers[1] = input("Please enter a second number")

numbers[2] = input("Please enter a third number")

numbers[3] = input("Please enter a fourth number")

print (numbers)

print ("Finding the Avarage")

avarage = int(numbers[0]) + int(numbers[1]) + int(numbers[2]) + int(numbers [3]) / 4

print (avarage)

其他回答

对于Python 3.4+,使用新的统计模块中的mean()来计算平均值:

from statistics import mean
xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]
mean(xs)

使用numpy.mean:

xs = [15, 18, 2, 36, 12, 78, 5, 6, 9]

import numpy as np
print(np.mean(xs))

假设

x = [
    [-5.01,-5.43,1.08,0.86,-2.67,4.94,-2.51,-2.25,5.56,1.03],
    [-8.12,-3.48,-5.52,-3.78,0.63,3.29,2.09,-2.13,2.86,-3.33],
    [-3.68,-3.54,1.66,-4.11,7.39,2.08,-2.59,-6.94,-2.26,4.33]
]

你可以注意到x的维数是3*10如果你需要得到每一行的平均值,你可以输入这个

theMean = np.mean(x1,axis=1)

不要忘记将numpy导入为np

我想补充另一种方法

import itertools,operator
list(itertools.accumulate(l,operator.add)).pop(-1) / len(l)

为了使用reduce来获取运行平均值,您需要跟踪到目前为止所看到的元素总数。因为它不是列表中的一个普通元素,所以还必须向reduce传递一个要折叠成的额外参数。

>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> running_average = reduce(lambda aggr, elem: (aggr[0] + elem, aggr[1]+1), l, (0.0,0))
>>> running_average[0]
(181.0, 9)
>>> running_average[0]/running_average[1]
20.111111111111111