这个C/ c++代码在Python中的等效代码是什么?

void foo()
{
    static int counter = 0;
    counter++;
    printf("counter is %d\n", counter);
}

具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?


使用generator函数生成迭代器。

def foo_gen():
    n = 0
    while True:
        n+=1
        yield n

然后像这样使用它

foo = foo_gen().next
for i in range(0,10):
    print foo()

如果你想要一个上限:

def foo_gen(limit=100000):
    n = 0
    while n < limit:
       n+=1
       yield n

如果迭代器终止(如上面的例子),您也可以直接遍历它,如

for i in foo_gen(20):
    print i

当然,在这些简单的情况下,最好使用xrange:)

这是yield statement的文档。


有点相反,但这应该是有效的:

def foo():
    foo.counter += 1
    print "Counter is %d" % foo.counter
foo.counter = 0

如果你想让计数器初始化代码在顶部而不是底部,你可以创建一个装饰器:

def static_vars(**kwargs):
    def decorate(func):
        for k in kwargs:
            setattr(func, k, kwargs[k])
        return func
    return decorate

然后像这样使用代码:

@static_vars(counter=0)
def foo():
    foo.counter += 1
    print "Counter is %d" % foo.counter

它仍然需要你使用foo。前缀,不幸的是。

(图片来源:@ony)


其他答案已经演示了您应该如何做到这一点。这里有一种方法你不应该:

>>> def foo(counter=[0]):
...   counter[0] += 1
...   print("Counter is %i." % counter[0]);
... 
>>> foo()
Counter is 1.
>>> foo()
Counter is 2.
>>> 

默认值仅在函数第一次求值时初始化,而不是每次执行时初始化,因此可以使用列表或任何其他可变对象来存储静态值。


_counter = 0
def foo():
   global _counter
   _counter += 1
   print 'counter is', _counter

Python习惯上使用下划线来表示私有变量。在C语言中,在函数内部声明静态变量的唯一原因是将它隐藏在函数之外,这并不是真正的Python惯用方法。


您可以向函数添加属性,并将其用作静态变量。

def myfunc():
  myfunc.counter += 1
  print myfunc.counter

# attribute must be initialized
myfunc.counter = 0

或者,如果你不想在函数外部设置变量,你可以使用hasattr()来避免AttributeError异常:

def myfunc():
  if not hasattr(myfunc, "counter"):
     myfunc.counter = 0  # it doesn't exist yet, so initialize it
  myfunc.counter += 1

无论如何,静态变量是相当罕见的,您应该为这个变量找到一个更好的位置,最有可能是在类中。


Python没有静态变量,但你可以通过定义一个可调用的类对象,然后将其用作函数来伪装它。也可以看看这个答案。

class Foo(object):
  # Class variable, shared by all instances of this class
  counter = 0

  def __call__(self):
    Foo.counter += 1
    print Foo.counter

# Create an object instance of class "Foo," called "foo"
foo = Foo()

# Make calls to the "__call__" method, via the object's name itself
foo() #prints 1
foo() #prints 2
foo() #prints 3

注意,__call__使类(对象)的实例可以通过自己的名称调用。这就是为什么上面调用foo()会调用类的__call__方法。从文档中可以看到:

任意类的实例都可以通过在类中定义__call__()方法来实现可调用。


惯用的方法是使用类,类可以有属性。如果您需要实例不分离,请使用单例。

有许多方法可以将“静态”变量伪造或蒙骗到Python中(到目前为止没有提到的一种方法是使用可变的默认参数),但这不是Python的惯用方法。只需要使用一个类。

如果您的使用模式合适,也可以使用生成器。


我个人更喜欢下面的装饰。各有各的。

def staticize(name, factory):
    """Makes a pseudo-static variable in calling function.

    If name `name` exists in calling function, return it. 
    Otherwise, saves return value of `factory()` in 
    name `name` of calling function and return it.

    :param name: name to use to store static object 
    in calling function
    :type name: String
    :param factory: used to initialize name `name` 
    in calling function
    :type factory: function
    :rtype: `type(factory())`

    >>> def steveholt(z):
    ...     a = staticize('a', list)
    ...     a.append(z)
    >>> steveholt.a
    Traceback (most recent call last):
    ...
    AttributeError: 'function' object has no attribute 'a'
    >>> steveholt(1)
    >>> steveholt.a
    [1]
    >>> steveholt('a')
    >>> steveholt.a
    [1, 'a']
    >>> steveholt.a = []
    >>> steveholt.a
    []
    >>> steveholt('zzz')
    >>> steveholt.a
    ['zzz']

    """
    from inspect import stack
    # get scope enclosing calling function
    calling_fn_scope = stack()[2][0]
    # get calling function
    calling_fn_name = stack()[1][3]
    calling_fn = calling_fn_scope.f_locals[calling_fn_name]
    if not hasattr(calling_fn, name):
        setattr(calling_fn, name, factory())
    return getattr(calling_fn, name)

下面是一个完全封装的版本,不需要外部初始化调用:

def fn():
    fn.counter=vars(fn).setdefault('counter',-1)
    fn.counter+=1
    print (fn.counter)

在Python中,函数是对象,我们可以简单地通过特殊属性__dict__向它们添加或修补成员变量。内置的vars()返回特殊属性__dict__。

EDIT:注意,与另一种try不同:除了AttributeError答案外,使用这种方法,变量将始终为初始化后的代码逻辑做好准备。我认为try:except AttributeError替代以下将不那么干和/或有尴尬的流程:

def Fibonacci(n):
   if n<2: return n
   Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
   return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it

EDIT2:当函数将从多个位置调用时,我只推荐上述方法。如果函数只在一个地方被调用,最好使用nonlocal:

def TheOnlyPlaceStaticFunctionIsCalled():
    memo={}
    def Fibonacci(n):
       nonlocal memo  # required in Python3. Python2 can see memo
       if n<2: return n
       return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
    ...
    print (Fibonacci(200))
    ...

你也可以考虑:

def foo():
    try:
        foo.counter += 1
    except AttributeError:
        foo.counter = 1

推理:

非常python化(“请求原谅而不是允许”) 使用异常(只抛出一次)而不是if分支(考虑StopIteration异常)


鉴于这个问题,我可以提出另一个可能更好用的替代方案,对方法和函数看起来都是一样的:

@static_var2('seed',0)
def funccounter(statics, add=1):
    statics.seed += add
    return statics.seed

print funccounter()       #1
print funccounter(add=2)  #3
print funccounter()       #4

class ACircle(object):
    @static_var2('seed',0)
    def counter(statics, self, add=1):
        statics.seed += add
        return statics.seed

c = ACircle()
print c.counter()      #1
print c.counter(add=2) #3
print c.counter()      #4
d = ACircle()
print d.counter()      #5
print d.counter(add=2) #7
print d.counter()      #8    

如果你喜欢这种用法,下面是它的实现:

class StaticMan(object):
    def __init__(self):
        self.__dict__['_d'] = {}

    def __getattr__(self, name):
        return self.__dict__['_d'][name]
    def __getitem__(self, name):
        return self.__dict__['_d'][name]
    def __setattr__(self, name, val):
        self.__dict__['_d'][name] = val
    def __setitem__(self, name, val):
        self.__dict__['_d'][name] = val

def static_var2(name, val):
    def decorator(original):
        if not hasattr(original, ':staticman'):    
            def wrapped(*args, **kwargs):
                return original(getattr(wrapped, ':staticman'), *args, **kwargs)
            setattr(wrapped, ':staticman', StaticMan())
            f = wrapped
        else:
            f = original #already wrapped

        getattr(f, ':staticman')[name] = val
        return f
    return decorator

许多人已经建议测试“hasattr”,但有一个更简单的答案:

def func():
    func.counter = getattr(func, 'counter', 0) + 1

没有try/except,没有测试hasattr,只有默认的getattr。


Python方法中的静态变量

class Count:
    def foo(self):
        try: 
            self.foo.__func__.counter += 1
        except AttributeError: 
            self.foo.__func__.counter = 1

        print self.foo.__func__.counter

m = Count()
m.foo()       # 1
m.foo()       # 2
m.foo()       # 3

def staticvariables(**variables):
    def decorate(function):
        for variable in variables:
            setattr(function, variable, variables[variable])
        return function
    return decorate

@staticvariables(counter=0, bar=1)
def foo():
    print(foo.counter)
    print(foo.bar)

就像上面vincent的代码一样,这将被用作函数装饰器,静态变量必须以函数名作为前缀访问。这段代码的优点(尽管每个人都可以聪明地看出这一点)是你可以有多个静态变量,并以更常规的方式初始化它们。


使用函数的属性作为静态变量有一些潜在的缺点:

每次要访问变量时,都必须写出函数的全名。 外部代码可以很容易地访问该变量并打乱值。

第二个问题的惯用python可能会用前导下划线来命名变量,以表明它不应该被访问,同时在事后保持它的可访问性。

使用闭包

另一种选择是使用词法闭包的模式,python 3中的nonlocal关键字支持这种模式。

def make_counter():
    i = 0
    def counter():
        nonlocal i
        i = i + 1
        return i
    return counter
counter = make_counter()

遗憾的是,我不知道如何将这个解决方案封装到装饰器中。

使用内部状态参数

另一种选择可能是使用未记录的参数作为可变值容器。

def counter(*, _i=[0]):
    _i[0] += 1
    return _i[0]

这是可行的,因为默认参数是在定义函数时计算的,而不是在调用函数时计算的。

更清洁的方法可能是使用容器类型而不是列表,例如:

def counter(*, _i = Mutable(0)):
    _i.value += 1
    return _i.value

但我不知道内置类型,清楚地传达的目的。


另一个(不推荐!)对https://stackoverflow.com/a/279598/916373这样的可调用对象的扭曲,如果您不介意使用一个时髦的调用签名的话

class foo(object):
    counter = 0;
    @staticmethod
    def __call__():
        foo.counter += 1
        print "counter is %i" % foo.counter

>>> foo()()
counter is 1
>>> foo()()
counter is 2

当然,这是一个老问题,但我想我可以提供一些更新。

看来性能论点已经过时了。 对于siInt_try和isInt_re2,相同的测试套件似乎给出了类似的结果。 当然,结果会有所不同,但这是在我的计算机上使用python 3.4.4的一次会话,使用Xeon W3550的内核4.3.01。 我已经运行了几次,结果似乎相似。 我将全局正则表达式移动到函数静态,但性能差异可以忽略不计。

isInt_try: 0.3690
isInt_str: 0.3981
isInt_re: 0.5870
isInt_re2: 0.3632

考虑到性能问题,try/catch似乎可以生成最适合未来和墙角情况的代码,所以可能只是将其包装在函数中


可读性更强一点,但更冗长(Python的Zen:显式比隐式更好):

>>> def func(_static={'counter': 0}):
...     _static['counter'] += 1
...     print _static['counter']
...
>>> func()
1
>>> func()
2
>>>

请看这里,了解它是如何工作的。


你可以创建一个所谓的“函数对象”,并给它一个标准的(非静态的)成员变量,而不是创建一个具有静态局部变量的函数。

既然你给出了一个c++编写的例子,我将首先解释什么是c++中的“函数对象”。“函数对象”就是任何带有重载操作符()的类。类实例的行为类似于函数。例如,你可以写int x = square(5);即使square是一个对象(带有重载操作符()),从技术上讲也不是一个“函数”。你可以给一个函数对象任何你可以给一个类对象的特性。

# C++ function object
class Foo_class {
    private:
        int counter;     
    public:
        Foo_class() {
             counter = 0;
        }
        void operator() () {  
            counter++;
            printf("counter is %d\n", counter);
        }     
   };
   Foo_class foo;

在Python中,我们也可以重载operator(),除非该方法被命名为__call__:

下面是一个类定义:

class Foo_class:
    def __init__(self): # __init__ is similair to a C++ class constructor
        self.counter = 0
        # self.counter is like a static member
        # variable of a function named "foo"
    def __call__(self): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
foo = Foo_class() # call the constructor

下面是一个使用这个类的例子:

from foo import foo

for i in range(0, 5):
    foo() # function call

打印到控制台的输出是:

counter is 1
counter is 2
counter is 3
counter is 4
counter is 5

如果你想让你的函数接受输入参数,你也可以将它们添加到__call__:

# FILE: foo.py - - - - - - - - - - - - - - - - - - - - - - - - -

class Foo_class:
    def __init__(self):
        self.counter = 0
    def __call__(self, x, y, z): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
        print("x, y, z, are %d, %d, %d" % (x, y, z));
foo = Foo_class() # call the constructor

# FILE: main.py - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

from foo import foo

for i in range(0, 5):
    foo(7, 8, 9) # function call

# Console Output - - - - - - - - - - - - - - - - - - - - - - - - - - 

counter is 1
x, y, z, are 7, 8, 9
counter is 2
x, y, z, are 7, 8, 9
counter is 3
x, y, z, are 7, 8, 9
counter is 4
x, y, z, are 7, 8, 9
counter is 5
x, y, z, are 7, 8, 9

这个回答建立在@claudiu的回答之上。

我发现我的代码变得越来越不清晰,而我一直都很清楚 当我要访问静态变量时,可以在函数名前面加上。

也就是说,在我的函数代码中,我更喜欢这样写:

print(statics.foo)

而不是

print(my_function_name.foo)

所以,我的解决方案是:

向函数中添加静态属性 在函数作用域中,添加一个局部变量statics作为my_function.statics的别名

from bunch import *

def static_vars(**kwargs):
    def decorate(func):
        statics = Bunch(**kwargs)
        setattr(func, "statics", statics)
        return func
    return decorate

@static_vars(name = "Martin")
def my_function():
    statics = my_function.statics
    print("Hello, {0}".format(statics.name))

备注

我的方法使用一个名为Bunch的类,它是一个字典,支持 属性风格的访问,一种JavaScript(参见2000年左右关于它的原始文章)

它可以通过pip install bunch安装

也可以这样手写:

class Bunch(dict):
    def __init__(self, **kw):
        dict.__init__(self,kw)
        self.__dict__ = self

Soulution n +=1

def foo():
  foo.__dict__.setdefault('count', 0)
  foo.count += 1
  return foo.count

其他解决方案将计数器属性附加到函数,通常使用复杂的逻辑来处理初始化。这对于新代码是不合适的。

在Python 3中,正确的方法是使用非局部语句:

counter = 0
def foo():
    nonlocal counter
    counter += 1
    print(f'counter is {counter}')

有关非局部语句的规范,请参阅PEP 3104。

如果计数器是模块私有的,则应该将其命名为_counter。


在尝试了几种方法后,我最终使用了@warvariuc的答案的改进版本:

import types

def func(_static=types.SimpleNamespace(counter=0)):
    _static.counter += 1
    print(_static.counter)

根据丹尼尔的回答(补充):

class Foo(object): 
    counter = 0  

def __call__(self, inc_value=0):
    Foo.counter += inc_value
    return Foo.counter

foo = Foo()

def use_foo(x,y):
    if(x==5):
        foo(2)
    elif(y==7):
        foo(3)
    if(foo() == 10):
        print("yello")


use_foo(5,1)
use_foo(5,1)
use_foo(1,7)
use_foo(1,7)
use_foo(1,1)

我想添加这一部分的原因是,静态变量不仅用于增加某个值,而且还用于检查静态变量是否等于某个值,作为一个现实生活中的例子。

静态变量仍然受到保护,并且仅在函数use_foo()的作用域内使用。

在这个例子中,调用foo()函数完全是(相对于相应的c++等效函数):

stat_c +=9; // in c++
foo(9)  #python equiv

if(stat_c==10){ //do something}  // c++

if(foo() == 10):      # python equiv
  #add code here      # python equiv       

Output :
yello
yello

如果类Foo被严格定义为一个单例类,那将是理想的。这将使它更加python化。


全局声明提供此功能。在下面的例子中(python 3.5或更高版本使用“f”),counter变量在函数外部定义。在函数中将其定义为全局的,意味着函数外部的“全局”版本应该对函数可用。所以每次函数运行时,它都会修改函数外部的值,在函数外部保留它。

counter = 0

def foo():
    global counter
    counter += 1
    print("counter is {}".format(counter))

foo() #output: "counter is 1"
foo() #output: "counter is 2"
foo() #output: "counter is 3"

我写了一个简单的函数来使用静态变量:

def Static():
    ### get the func object by which Static() is called.
    from inspect import currentframe, getframeinfo
    caller = currentframe().f_back
    func_name = getframeinfo(caller)[2]
    # print(func_name)
    caller = caller.f_back
    func = caller.f_locals.get(
        func_name, caller.f_globals.get(
            func_name
        )
    )
    
    class StaticVars:
        def has(self, varName):
            return hasattr(self, varName)
        def declare(self, varName, value):
            if not self.has(varName):
                setattr(self, varName, value)

    if hasattr(func, "staticVars"):
        return func.staticVars
    else:
        # add an attribute to func
        func.staticVars = StaticVars()
        return func.staticVars

使用方法:

def myfunc(arg):
    if Static().has('test1'):
        Static().test += 1
    else:
        Static().test = 1
    print(Static().test)

    # declare() only takes effect in the first time for each static variable.
    Static().declare('test2', 1)
    print(Static().test2)
    Static().test2 += 1

使用装饰器和闭包

下面的装饰器可用于创建静态函数变量。它将声明的函数替换为函数本身的返回值。这意味着被修饰的函数必须返回一个函数。

def static_inner_self(func):
    return func()

然后在返回另一个带有捕获变量的函数的函数上使用decorator:

@static_inner_self
def foo():
    counter = 0
    def foo():
        nonlocal counter
        counter += 1
        print(f"counter is {counter}")
    return foo

nonlocal是必需的,否则Python认为计数器变量是一个局部变量而不是一个捕获变量。Python之所以如此,是因为变量赋值counter += 1。函数中的任何赋值都会使Python认为该变量是局部变量。

如果你没有在内部函数中为变量赋值,那么你可以忽略非局部语句,例如,在这个函数中,我用来缩进字符串的行,在这个函数中,Python可以推断出变量是非局部的:

@static_inner_self
def indent_lines():
    import re
    re_start_line = re.compile(r'^', flags=re.MULTILINE)
    def indent_lines(text, indent=2):
        return re_start_line.sub(" "*indent, text)
    return indent_lines

附注:有一个被删除的答案提出了同样的问题。我不知道作者为什么删掉它。 https://stackoverflow.com/a/23366737/195417


米格尔·安吉洛的自我重新定义解决方案甚至可以不需要任何装饰:

def fun(increment=1):
    global fun
    counter = 0
    def fun(increment=1):
        nonlocal counter
        counter += increment
        print(counter)
    fun(increment)

fun()    #=> 1
fun()    #=> 2
fun(10)  #=> 12

第二行必须进行调整,以获得有限的范围:

def outerfun():
    def innerfun(increment=1):
        nonlocal innerfun
        counter = 0
        def innerfun(increment=1):
            nonlocal counter
            counter += increment
            print(counter)
        innerfun(increment)

    innerfun()    #=> 1
    innerfun()    #=> 2
    innerfun(10)  #=> 12

outerfun()

装饰器的优点是,你不必额外注意你的施工范围。