这个C/ c++代码在Python中的等效代码是什么?

void foo()
{
    static int counter = 0;
    counter++;
    printf("counter is %d\n", counter);
}

具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?


当前回答

当然,这是一个老问题,但我想我可以提供一些更新。

看来性能论点已经过时了。 对于siInt_try和isInt_re2,相同的测试套件似乎给出了类似的结果。 当然,结果会有所不同,但这是在我的计算机上使用python 3.4.4的一次会话,使用Xeon W3550的内核4.3.01。 我已经运行了几次,结果似乎相似。 我将全局正则表达式移动到函数静态,但性能差异可以忽略不计。

isInt_try: 0.3690
isInt_str: 0.3981
isInt_re: 0.5870
isInt_re2: 0.3632

考虑到性能问题,try/catch似乎可以生成最适合未来和墙角情况的代码,所以可能只是将其包装在函数中

其他回答

全局声明提供此功能。在下面的例子中(python 3.5或更高版本使用“f”),counter变量在函数外部定义。在函数中将其定义为全局的,意味着函数外部的“全局”版本应该对函数可用。所以每次函数运行时,它都会修改函数外部的值,在函数外部保留它。

counter = 0

def foo():
    global counter
    counter += 1
    print("counter is {}".format(counter))

foo() #output: "counter is 1"
foo() #output: "counter is 2"
foo() #output: "counter is 3"

下面是一个完全封装的版本,不需要外部初始化调用:

def fn():
    fn.counter=vars(fn).setdefault('counter',-1)
    fn.counter+=1
    print (fn.counter)

在Python中,函数是对象,我们可以简单地通过特殊属性__dict__向它们添加或修补成员变量。内置的vars()返回特殊属性__dict__。

EDIT:注意,与另一种try不同:除了AttributeError答案外,使用这种方法,变量将始终为初始化后的代码逻辑做好准备。我认为try:except AttributeError替代以下将不那么干和/或有尴尬的流程:

def Fibonacci(n):
   if n<2: return n
   Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
   return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it

EDIT2:当函数将从多个位置调用时,我只推荐上述方法。如果函数只在一个地方被调用,最好使用nonlocal:

def TheOnlyPlaceStaticFunctionIsCalled():
    memo={}
    def Fibonacci(n):
       nonlocal memo  # required in Python3. Python2 can see memo
       if n<2: return n
       return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
    ...
    print (Fibonacci(200))
    ...

另一个(不推荐!)对https://stackoverflow.com/a/279598/916373这样的可调用对象的扭曲,如果您不介意使用一个时髦的调用签名的话

class foo(object):
    counter = 0;
    @staticmethod
    def __call__():
        foo.counter += 1
        print "counter is %i" % foo.counter

>>> foo()()
counter is 1
>>> foo()()
counter is 2

你可以创建一个所谓的“函数对象”,并给它一个标准的(非静态的)成员变量,而不是创建一个具有静态局部变量的函数。

既然你给出了一个c++编写的例子,我将首先解释什么是c++中的“函数对象”。“函数对象”就是任何带有重载操作符()的类。类实例的行为类似于函数。例如,你可以写int x = square(5);即使square是一个对象(带有重载操作符()),从技术上讲也不是一个“函数”。你可以给一个函数对象任何你可以给一个类对象的特性。

# C++ function object
class Foo_class {
    private:
        int counter;     
    public:
        Foo_class() {
             counter = 0;
        }
        void operator() () {  
            counter++;
            printf("counter is %d\n", counter);
        }     
   };
   Foo_class foo;

在Python中,我们也可以重载operator(),除非该方法被命名为__call__:

下面是一个类定义:

class Foo_class:
    def __init__(self): # __init__ is similair to a C++ class constructor
        self.counter = 0
        # self.counter is like a static member
        # variable of a function named "foo"
    def __call__(self): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
foo = Foo_class() # call the constructor

下面是一个使用这个类的例子:

from foo import foo

for i in range(0, 5):
    foo() # function call

打印到控制台的输出是:

counter is 1
counter is 2
counter is 3
counter is 4
counter is 5

如果你想让你的函数接受输入参数,你也可以将它们添加到__call__:

# FILE: foo.py - - - - - - - - - - - - - - - - - - - - - - - - -

class Foo_class:
    def __init__(self):
        self.counter = 0
    def __call__(self, x, y, z): # overload operator()
        self.counter += 1
        print("counter is %d" % self.counter);
        print("x, y, z, are %d, %d, %d" % (x, y, z));
foo = Foo_class() # call the constructor

# FILE: main.py - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

from foo import foo

for i in range(0, 5):
    foo(7, 8, 9) # function call

# Console Output - - - - - - - - - - - - - - - - - - - - - - - - - - 

counter is 1
x, y, z, are 7, 8, 9
counter is 2
x, y, z, are 7, 8, 9
counter is 3
x, y, z, are 7, 8, 9
counter is 4
x, y, z, are 7, 8, 9
counter is 5
x, y, z, are 7, 8, 9

我个人更喜欢下面的装饰。各有各的。

def staticize(name, factory):
    """Makes a pseudo-static variable in calling function.

    If name `name` exists in calling function, return it. 
    Otherwise, saves return value of `factory()` in 
    name `name` of calling function and return it.

    :param name: name to use to store static object 
    in calling function
    :type name: String
    :param factory: used to initialize name `name` 
    in calling function
    :type factory: function
    :rtype: `type(factory())`

    >>> def steveholt(z):
    ...     a = staticize('a', list)
    ...     a.append(z)
    >>> steveholt.a
    Traceback (most recent call last):
    ...
    AttributeError: 'function' object has no attribute 'a'
    >>> steveholt(1)
    >>> steveholt.a
    [1]
    >>> steveholt('a')
    >>> steveholt.a
    [1, 'a']
    >>> steveholt.a = []
    >>> steveholt.a
    []
    >>> steveholt('zzz')
    >>> steveholt.a
    ['zzz']

    """
    from inspect import stack
    # get scope enclosing calling function
    calling_fn_scope = stack()[2][0]
    # get calling function
    calling_fn_name = stack()[1][3]
    calling_fn = calling_fn_scope.f_locals[calling_fn_name]
    if not hasattr(calling_fn, name):
        setattr(calling_fn, name, factory())
    return getattr(calling_fn, name)