这个C/ c++代码在Python中的等效代码是什么?

void foo()
{
    static int counter = 0;
    counter++;
    printf("counter is %d\n", counter);
}

具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?


当前回答

全局声明提供此功能。在下面的例子中(python 3.5或更高版本使用“f”),counter变量在函数外部定义。在函数中将其定义为全局的,意味着函数外部的“全局”版本应该对函数可用。所以每次函数运行时,它都会修改函数外部的值,在函数外部保留它。

counter = 0

def foo():
    global counter
    counter += 1
    print("counter is {}".format(counter))

foo() #output: "counter is 1"
foo() #output: "counter is 2"
foo() #output: "counter is 3"

其他回答

您可以向函数添加属性,并将其用作静态变量。

def myfunc():
  myfunc.counter += 1
  print myfunc.counter

# attribute must be initialized
myfunc.counter = 0

或者,如果你不想在函数外部设置变量,你可以使用hasattr()来避免AttributeError异常:

def myfunc():
  if not hasattr(myfunc, "counter"):
     myfunc.counter = 0  # it doesn't exist yet, so initialize it
  myfunc.counter += 1

无论如何,静态变量是相当罕见的,您应该为这个变量找到一个更好的位置,最有可能是在类中。

根据丹尼尔的回答(补充):

class Foo(object): 
    counter = 0  

def __call__(self, inc_value=0):
    Foo.counter += inc_value
    return Foo.counter

foo = Foo()

def use_foo(x,y):
    if(x==5):
        foo(2)
    elif(y==7):
        foo(3)
    if(foo() == 10):
        print("yello")


use_foo(5,1)
use_foo(5,1)
use_foo(1,7)
use_foo(1,7)
use_foo(1,1)

我想添加这一部分的原因是,静态变量不仅用于增加某个值,而且还用于检查静态变量是否等于某个值,作为一个现实生活中的例子。

静态变量仍然受到保护,并且仅在函数use_foo()的作用域内使用。

在这个例子中,调用foo()函数完全是(相对于相应的c++等效函数):

stat_c +=9; // in c++
foo(9)  #python equiv

if(stat_c==10){ //do something}  // c++

if(foo() == 10):      # python equiv
  #add code here      # python equiv       

Output :
yello
yello

如果类Foo被严格定义为一个单例类,那将是理想的。这将使它更加python化。

_counter = 0
def foo():
   global _counter
   _counter += 1
   print 'counter is', _counter

Python习惯上使用下划线来表示私有变量。在C语言中,在函数内部声明静态变量的唯一原因是将它隐藏在函数之外,这并不是真正的Python惯用方法。

下面是一个完全封装的版本,不需要外部初始化调用:

def fn():
    fn.counter=vars(fn).setdefault('counter',-1)
    fn.counter+=1
    print (fn.counter)

在Python中,函数是对象,我们可以简单地通过特殊属性__dict__向它们添加或修补成员变量。内置的vars()返回特殊属性__dict__。

EDIT:注意,与另一种try不同:除了AttributeError答案外,使用这种方法,变量将始终为初始化后的代码逻辑做好准备。我认为try:except AttributeError替代以下将不那么干和/或有尴尬的流程:

def Fibonacci(n):
   if n<2: return n
   Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
   return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it

EDIT2:当函数将从多个位置调用时,我只推荐上述方法。如果函数只在一个地方被调用,最好使用nonlocal:

def TheOnlyPlaceStaticFunctionIsCalled():
    memo={}
    def Fibonacci(n):
       nonlocal memo  # required in Python3. Python2 can see memo
       if n<2: return n
       return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
    ...
    print (Fibonacci(200))
    ...

米格尔·安吉洛的自我重新定义解决方案甚至可以不需要任何装饰:

def fun(increment=1):
    global fun
    counter = 0
    def fun(increment=1):
        nonlocal counter
        counter += increment
        print(counter)
    fun(increment)

fun()    #=> 1
fun()    #=> 2
fun(10)  #=> 12

第二行必须进行调整,以获得有限的范围:

def outerfun():
    def innerfun(increment=1):
        nonlocal innerfun
        counter = 0
        def innerfun(increment=1):
            nonlocal counter
            counter += increment
            print(counter)
        innerfun(increment)

    innerfun()    #=> 1
    innerfun()    #=> 2
    innerfun(10)  #=> 12

outerfun()

装饰器的优点是,你不必额外注意你的施工范围。