这个C/ c++代码在Python中的等效代码是什么?
void foo()
{
static int counter = 0;
counter++;
printf("counter is %d\n", counter);
}
具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?
这个C/ c++代码在Python中的等效代码是什么?
void foo()
{
static int counter = 0;
counter++;
printf("counter is %d\n", counter);
}
具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?
当前回答
下面是一个完全封装的版本,不需要外部初始化调用:
def fn():
fn.counter=vars(fn).setdefault('counter',-1)
fn.counter+=1
print (fn.counter)
在Python中,函数是对象,我们可以简单地通过特殊属性__dict__向它们添加或修补成员变量。内置的vars()返回特殊属性__dict__。
EDIT:注意,与另一种try不同:除了AttributeError答案外,使用这种方法,变量将始终为初始化后的代码逻辑做好准备。我认为try:except AttributeError替代以下将不那么干和/或有尴尬的流程:
def Fibonacci(n):
if n<2: return n
Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it
EDIT2:当函数将从多个位置调用时,我只推荐上述方法。如果函数只在一个地方被调用,最好使用nonlocal:
def TheOnlyPlaceStaticFunctionIsCalled():
memo={}
def Fibonacci(n):
nonlocal memo # required in Python3. Python2 can see memo
if n<2: return n
return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
...
print (Fibonacci(200))
...
其他回答
您可以向函数添加属性,并将其用作静态变量。
def myfunc():
myfunc.counter += 1
print myfunc.counter
# attribute must be initialized
myfunc.counter = 0
或者,如果你不想在函数外部设置变量,你可以使用hasattr()来避免AttributeError异常:
def myfunc():
if not hasattr(myfunc, "counter"):
myfunc.counter = 0 # it doesn't exist yet, so initialize it
myfunc.counter += 1
无论如何,静态变量是相当罕见的,您应该为这个变量找到一个更好的位置,最有可能是在类中。
_counter = 0 def foo(): global _counter _counter += 1 print 'counter is', _counter
Python习惯上使用下划线来表示私有变量。在C语言中,在函数内部声明静态变量的唯一原因是将它隐藏在函数之外,这并不是真正的Python惯用方法。
def staticvariables(**variables):
def decorate(function):
for variable in variables:
setattr(function, variable, variables[variable])
return function
return decorate
@staticvariables(counter=0, bar=1)
def foo():
print(foo.counter)
print(foo.bar)
就像上面vincent的代码一样,这将被用作函数装饰器,静态变量必须以函数名作为前缀访问。这段代码的优点(尽管每个人都可以聪明地看出这一点)是你可以有多个静态变量,并以更常规的方式初始化它们。
根据丹尼尔的回答(补充):
class Foo(object):
counter = 0
def __call__(self, inc_value=0):
Foo.counter += inc_value
return Foo.counter
foo = Foo()
def use_foo(x,y):
if(x==5):
foo(2)
elif(y==7):
foo(3)
if(foo() == 10):
print("yello")
use_foo(5,1)
use_foo(5,1)
use_foo(1,7)
use_foo(1,7)
use_foo(1,1)
我想添加这一部分的原因是,静态变量不仅用于增加某个值,而且还用于检查静态变量是否等于某个值,作为一个现实生活中的例子。
静态变量仍然受到保护,并且仅在函数use_foo()的作用域内使用。
在这个例子中,调用foo()函数完全是(相对于相应的c++等效函数):
stat_c +=9; // in c++
foo(9) #python equiv
if(stat_c==10){ //do something} // c++
if(foo() == 10): # python equiv
#add code here # python equiv
Output :
yello
yello
如果类Foo被严格定义为一个单例类,那将是理想的。这将使它更加python化。
我个人更喜欢下面的装饰。各有各的。
def staticize(name, factory):
"""Makes a pseudo-static variable in calling function.
If name `name` exists in calling function, return it.
Otherwise, saves return value of `factory()` in
name `name` of calling function and return it.
:param name: name to use to store static object
in calling function
:type name: String
:param factory: used to initialize name `name`
in calling function
:type factory: function
:rtype: `type(factory())`
>>> def steveholt(z):
... a = staticize('a', list)
... a.append(z)
>>> steveholt.a
Traceback (most recent call last):
...
AttributeError: 'function' object has no attribute 'a'
>>> steveholt(1)
>>> steveholt.a
[1]
>>> steveholt('a')
>>> steveholt.a
[1, 'a']
>>> steveholt.a = []
>>> steveholt.a
[]
>>> steveholt('zzz')
>>> steveholt.a
['zzz']
"""
from inspect import stack
# get scope enclosing calling function
calling_fn_scope = stack()[2][0]
# get calling function
calling_fn_name = stack()[1][3]
calling_fn = calling_fn_scope.f_locals[calling_fn_name]
if not hasattr(calling_fn, name):
setattr(calling_fn, name, factory())
return getattr(calling_fn, name)