这个C/ c++代码在Python中的等效代码是什么?
void foo()
{
static int counter = 0;
counter++;
printf("counter is %d\n", counter);
}
具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?
这个C/ c++代码在Python中的等效代码是什么?
void foo()
{
static int counter = 0;
counter++;
printf("counter is %d\n", counter);
}
具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?
当前回答
米格尔·安吉洛的自我重新定义解决方案甚至可以不需要任何装饰:
def fun(increment=1):
global fun
counter = 0
def fun(increment=1):
nonlocal counter
counter += increment
print(counter)
fun(increment)
fun() #=> 1
fun() #=> 2
fun(10) #=> 12
第二行必须进行调整,以获得有限的范围:
def outerfun():
def innerfun(increment=1):
nonlocal innerfun
counter = 0
def innerfun(increment=1):
nonlocal counter
counter += increment
print(counter)
innerfun(increment)
innerfun() #=> 1
innerfun() #=> 2
innerfun(10) #=> 12
outerfun()
装饰器的优点是,你不必额外注意你的施工范围。
其他回答
你也可以考虑:
def foo():
try:
foo.counter += 1
except AttributeError:
foo.counter = 1
推理:
非常python化(“请求原谅而不是允许”) 使用异常(只抛出一次)而不是if分支(考虑StopIteration异常)
另一个(不推荐!)对https://stackoverflow.com/a/279598/916373这样的可调用对象的扭曲,如果您不介意使用一个时髦的调用签名的话
class foo(object):
counter = 0;
@staticmethod
def __call__():
foo.counter += 1
print "counter is %i" % foo.counter
>>> foo()()
counter is 1
>>> foo()()
counter is 2
全局声明提供此功能。在下面的例子中(python 3.5或更高版本使用“f”),counter变量在函数外部定义。在函数中将其定义为全局的,意味着函数外部的“全局”版本应该对函数可用。所以每次函数运行时,它都会修改函数外部的值,在函数外部保留它。
counter = 0
def foo():
global counter
counter += 1
print("counter is {}".format(counter))
foo() #output: "counter is 1"
foo() #output: "counter is 2"
foo() #output: "counter is 3"
Python方法中的静态变量
class Count:
def foo(self):
try:
self.foo.__func__.counter += 1
except AttributeError:
self.foo.__func__.counter = 1
print self.foo.__func__.counter
m = Count()
m.foo() # 1
m.foo() # 2
m.foo() # 3
下面是一个完全封装的版本,不需要外部初始化调用:
def fn():
fn.counter=vars(fn).setdefault('counter',-1)
fn.counter+=1
print (fn.counter)
在Python中,函数是对象,我们可以简单地通过特殊属性__dict__向它们添加或修补成员变量。内置的vars()返回特殊属性__dict__。
EDIT:注意,与另一种try不同:除了AttributeError答案外,使用这种方法,变量将始终为初始化后的代码逻辑做好准备。我认为try:except AttributeError替代以下将不那么干和/或有尴尬的流程:
def Fibonacci(n):
if n<2: return n
Fibonacci.memo=vars(Fibonacci).setdefault('memo',{}) # use static variable to hold a results cache
return Fibonacci.memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2)) # lookup result in cache, if not available then calculate and store it
EDIT2:当函数将从多个位置调用时,我只推荐上述方法。如果函数只在一个地方被调用,最好使用nonlocal:
def TheOnlyPlaceStaticFunctionIsCalled():
memo={}
def Fibonacci(n):
nonlocal memo # required in Python3. Python2 can see memo
if n<2: return n
return memo.setdefault(n,Fibonacci(n-1)+Fibonacci(n-2))
...
print (Fibonacci(200))
...