有人知道如何在Python中从多维数组中提取列吗?
您是否使用了NumPy数组?Python有array模块,但不支持多维数组。普通的Python列表也是一维的。
然而,如果你有一个简单的二维列表,像这样:
A = [[1,2,3,4],
[5,6,7,8]]
然后你可以像这样提取一个列:
def column(matrix, i):
return [row[i] for row in matrix]
提取第二列(索引1):
>>> column(A, 1)
[2, 6]
或者简单地说:
>>> [row[1] for row in A]
[2, 6]
如果你喜欢map-reduce风格的python, itemgetter操作符也会有帮助,而不是列表推导式,为了一点变化!
# tested in 2.4
from operator import itemgetter
def column(matrix,i):
f = itemgetter(i)
return map(f,matrix)
M = [range(x,x+5) for x in range(10)]
assert column(M,1) == range(1,11)
>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])
>>> A
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
>>> A[:,2] # returns the third columm
array([3, 7])
参见:"numpy。“Arange”和“重塑”来分配内存
示例:(用矩阵(3x4)的形状分配数组)
nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)
如果你有一个数组
a = [[1, 2], [2, 3], [3, 4]]
然后像这样提取第一列:
[row[0] for row in a]
结果是这样的:
[1, 2, 3]
点击这里查看详情!
a = [[1, 2], [2, 3], [3, 4]]
a2 = zip(*a)
a2[0]
它和上面的是一样的,只是它更整洁一些 zip可以完成这项工作,但需要单个数组作为参数,*a语法将多维数组解压缩为单个数组参数
尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:
map(None, *[(1,2,3,), (4,5,), (6,)])
结果:
[(1, 4, 6), (2, 5, None), (3, None, None)]
第一列如下:
map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)
嗯,有点晚了……
如果性能很重要,你的数据是矩形的,你也可以将它存储在一维中,并通过常规切片访问列,例如. ...
A = [[1,2,3,4],[5,6,7,8]] #< assume this 4x2-matrix
B = reduce( operator.add, A ) #< get it one-dimensional
def column1d( matrix, dimX, colIdx ):
return matrix[colIdx::dimX]
def row1d( matrix, dimX, rowIdx ):
return matrix[rowIdx:rowIdx+dimX]
>>> column1d( B, 4, 1 )
[2, 6]
>>> row1d( B, 4, 1 )
[2, 3, 4, 5]
巧妙的是,这真的很快。然而,负索引在这里不起作用!所以你不能通过索引-1访问最后一列或最后一行。
如果您需要负索引,您可以稍微调整访问函数,例如。
def column1d( matrix, dimX, colIdx ):
return matrix[colIdx % dimX::dimX]
def row1d( matrix, dimX, dimY, rowIdx ):
rowIdx = (rowIdx % dimY) * dimX
return matrix[rowIdx:rowIdx+dimX]
另一种使用矩阵的方法
>>> from numpy import matrix
>>> a = [ [1,2,3],[4,5,6],[7,8,9] ]
>>> matrix(a).transpose()[1].getA()[0]
array([2, 5, 8])
>>> matrix(a).transpose()[0].getA()[0]
array([1, 4, 7])
所有列从一个矩阵到一个新的列表:
N = len(matrix)
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]
你也可以用这个:
values = np.array([[1,2,3],[4,5,6]])
values[...,0] # first column
#[1,4]
注意:这对于内置数组和未对齐的数组无效(例如np.array([[1,2,3],[4,5,6,7]]))
我认为你想从一个数组中提取一个列,比如下面的数组
import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
现在如果你想要得到格式中的第三列
D=array[[3],
[7],
[11]]
然后你需要首先把数组变成一个矩阵
B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)
现在你可以做基于元素的计算就像你在excel中做的一样。
假设我们有nxm矩阵(n行m列)5行4列
matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]
要在python中提取列,我们可以像这样使用列表推导式
[ [row[i] for row in matrix] for in range(4) ]
你可以用矩阵的列数来替换4。 结果是
,10,14,18,5,9,13,17 [[1], [2], [3,7,11,15,19], [4,8,12,16,20]]
def get_col(arr, col):
return map(lambda x : x[col], arr)
a = [[1,2,3,4], [5,6,7,8], [9,10,11,12],[13,14,15,16]]
print get_col(a, 3)
Python中的map函数是另一种方法。
如果你想抓取多个列,可以使用slice:
a = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
print(a[:, [1, 2]])
[[2 3]
[5 6]
[8 9]]
我更喜欢下一个提示: 将矩阵命名为matrix_a并使用column_number,例如:
import numpy as np
matrix_a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
column_number=2
# you can get the row from transposed matrix - it will be a column:
col=matrix_a.transpose()[column_number]
>>> x = arange(20).reshape(4,5)
>>> x array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
如果你想要第二列,你可以用
>>> x[:, 1]
array([ 1, 6, 11, 16])
只要使用转置(),就可以像求行一样简单地求列
matrix=np.array(originalMatrix).transpose()
print matrix[NumberOfColumns]
array = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
col1 = [val[1] for val in array]
col2 = [val[2] for val in array]
col3 = [val[3] for val in array]
col4 = [val[4] for val in array]
print(col1)
print(col2)
print(col3)
print(col4)
Output:
[1, 5, 9, 13]
[2, 6, 10, 14]
[3, 7, 11, 15]
[4, 8, 12, 16]
如果你在Python中有一个二维数组(不是numpy),你可以像这样提取所有的列,
data = [
['a', 1, 2],
['b', 3, 4],
['c', 5, 6]
]
columns = list(zip(*data))
print("column[0] = {}".format(columns[0]))
print("column[1] = {}".format(columns[1]))
print("column[2] = {}".format(columns[2]))
执行这段代码会得到,
>>> print("column[0] = {}".format(columns[0]))
column[0] = ('a', 'b', 'c')
>>> print("column[1] = {}".format(columns[1]))
column[1] = (1, 3, 5)
>>> print("column[2] = {}".format(columns[2]))
column[2] = (2, 4, 6)
推荐文章
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成
- 提取和保存视频帧
- 使用请求包时出现SSL InsecurePlatform错误
- 如何检索Pandas数据帧中的列数?
- except:和except的区别:
- 错误:“字典更新序列元素#0的长度为1;2是必需的”