有人知道如何在Python中从多维数组中提取列吗?


当前回答

>>> x = arange(20).reshape(4,5)
>>> x array([[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14],
        [15, 16, 17, 18, 19]])

如果你想要第二列,你可以用

>>> x[:, 1]
array([ 1,  6, 11, 16])

其他回答

尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:

map(None, *[(1,2,3,), (4,5,), (6,)])

结果:

[(1, 4, 6), (2, 5, None), (3, None, None)]

第一列如下:

map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)
>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])

>>> A
array([[1, 2, 3, 4],
    [5, 6, 7, 8]])

>>> A[:,2] # returns the third columm
array([3, 7])

参见:"numpy。“Arange”和“重塑”来分配内存

示例:(用矩阵(3x4)的形状分配数组)

nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)

您是否使用了NumPy数组?Python有array模块,但不支持多维数组。普通的Python列表也是一维的。

然而,如果你有一个简单的二维列表,像这样:

A = [[1,2,3,4],
     [5,6,7,8]]

然后你可以像这样提取一个列:

def column(matrix, i):
    return [row[i] for row in matrix]

提取第二列(索引1):

>>> column(A, 1)
[2, 6]

或者简单地说:

>>> [row[1] for row in A]
[2, 6]

如果你有一个数组

a = [[1, 2], [2, 3], [3, 4]]

然后像这样提取第一列:

[row[0] for row in a]

结果是这样的:

[1, 2, 3]

只要使用转置(),就可以像求行一样简单地求列

matrix=np.array(originalMatrix).transpose()
print matrix[NumberOfColumns]