有人知道如何在Python中从多维数组中提取列吗?


当前回答

所有列从一个矩阵到一个新的列表:

N = len(matrix) 
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]

其他回答

所有列从一个矩阵到一个新的列表:

N = len(matrix) 
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]

假设我们有nxm矩阵(n行m列)5行4列

matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]

要在python中提取列,我们可以像这样使用列表推导式

[ [row[i] for row in matrix] for in range(4) ]

你可以用矩阵的列数来替换4。 结果是

,10,14,18,5,9,13,17 [[1], [2], [3,7,11,15,19], [4,8,12,16,20]]

我更喜欢下一个提示: 将矩阵命名为matrix_a并使用column_number,例如:

import numpy as np
matrix_a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
column_number=2

# you can get the row from transposed matrix - it will be a column:
col=matrix_a.transpose()[column_number]

另一种使用矩阵的方法

>>> from numpy import matrix
>>> a = [ [1,2,3],[4,5,6],[7,8,9] ]
>>> matrix(a).transpose()[1].getA()[0]
array([2, 5, 8])
>>> matrix(a).transpose()[0].getA()[0]
array([1, 4, 7])

嗯,有点晚了……

如果性能很重要,你的数据是矩形的,你也可以将它存储在一维中,并通过常规切片访问列,例如. ...

A = [[1,2,3,4],[5,6,7,8]]     #< assume this 4x2-matrix
B = reduce( operator.add, A ) #< get it one-dimensional

def column1d( matrix, dimX, colIdx ):
  return matrix[colIdx::dimX]

def row1d( matrix, dimX, rowIdx ):
  return matrix[rowIdx:rowIdx+dimX] 

>>> column1d( B, 4, 1 )
[2, 6]
>>> row1d( B, 4, 1 )
[2, 3, 4, 5]

巧妙的是,这真的很快。然而,负索引在这里不起作用!所以你不能通过索引-1访问最后一列或最后一行。

如果您需要负索引,您可以稍微调整访问函数,例如。

def column1d( matrix, dimX, colIdx ):
  return matrix[colIdx % dimX::dimX]

def row1d( matrix, dimX, dimY, rowIdx ):
  rowIdx = (rowIdx % dimY) * dimX
  return matrix[rowIdx:rowIdx+dimX]