有人知道如何在Python中从多维数组中提取列吗?


当前回答

所有列从一个矩阵到一个新的列表:

N = len(matrix) 
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]

其他回答

>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])

>>> A
array([[1, 2, 3, 4],
    [5, 6, 7, 8]])

>>> A[:,2] # returns the third columm
array([3, 7])

参见:"numpy。“Arange”和“重塑”来分配内存

示例:(用矩阵(3x4)的形状分配数组)

nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)

尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:

map(None, *[(1,2,3,), (4,5,), (6,)])

结果:

[(1, 4, 6), (2, 5, None), (3, None, None)]

第一列如下:

map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)

点击这里查看详情!

a = [[1, 2], [2, 3], [3, 4]]
a2 = zip(*a)
a2[0]

它和上面的是一样的,只是它更整洁一些 zip可以完成这项工作,但需要单个数组作为参数,*a语法将多维数组解压缩为单个数组参数

所有列从一个矩阵到一个新的列表:

N = len(matrix) 
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]

如果你在Python中有一个二维数组(不是numpy),你可以像这样提取所有的列,

data = [
['a', 1, 2], 
['b', 3, 4], 
['c', 5, 6]
]

columns = list(zip(*data))

print("column[0] = {}".format(columns[0]))
print("column[1] = {}".format(columns[1]))
print("column[2] = {}".format(columns[2]))

执行这段代码会得到,

>>> print("column[0] = {}".format(columns[0]))
column[0] = ('a', 'b', 'c')

>>> print("column[1] = {}".format(columns[1]))
column[1] = (1, 3, 5)

>>> print("column[2] = {}".format(columns[2]))
column[2] = (2, 4, 6)