有人知道如何在Python中从多维数组中提取列吗?
当前回答
我认为你想从一个数组中提取一个列,比如下面的数组
import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
现在如果你想要得到格式中的第三列
D=array[[3],
[7],
[11]]
然后你需要首先把数组变成一个矩阵
B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)
现在你可以做基于元素的计算就像你在excel中做的一样。
其他回答
尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:
map(None, *[(1,2,3,), (4,5,), (6,)])
结果:
[(1, 4, 6), (2, 5, None), (3, None, None)]
第一列如下:
map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)
如果你有一个数组
a = [[1, 2], [2, 3], [3, 4]]
然后像这样提取第一列:
[row[0] for row in a]
结果是这样的:
[1, 2, 3]
另一种使用矩阵的方法
>>> from numpy import matrix
>>> a = [ [1,2,3],[4,5,6],[7,8,9] ]
>>> matrix(a).transpose()[1].getA()[0]
array([2, 5, 8])
>>> matrix(a).transpose()[0].getA()[0]
array([1, 4, 7])
如果你喜欢map-reduce风格的python, itemgetter操作符也会有帮助,而不是列表推导式,为了一点变化!
# tested in 2.4
from operator import itemgetter
def column(matrix,i):
f = itemgetter(i)
return map(f,matrix)
M = [range(x,x+5) for x in range(10)]
assert column(M,1) == range(1,11)
>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])
>>> A
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
>>> A[:,2] # returns the third columm
array([3, 7])
参见:"numpy。“Arange”和“重塑”来分配内存
示例:(用矩阵(3x4)的形状分配数组)
nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)
推荐文章
- 试图在Windows 10上运行Python时出现“权限被拒绝”
- 向对象数组添加属性
- 如何在Django中设置时区
- 即使模板文件存在,Flask也会引发TemplateNotFound错误
- defaultdict的嵌套defaultdict
- 构造tkinter应用程序的最佳方法?
- 如何在Python中逐行打印字典?
- 当试图运行Python脚本时,“ImportError:没有命名模块”
- pylab和pyplot的区别是什么?
- Argparse:确定使用了哪个子解析器
- django导入错误-没有core.management模块
- JavaScript在数组中
- 在芹菜中检索队列中的任务列表
- Ruby数组到字符串的转换
- 如何分割(块)一个Ruby数组成X元素的部分?