有人知道如何在Python中从多维数组中提取列吗?


当前回答

嗯,有点晚了……

如果性能很重要,你的数据是矩形的,你也可以将它存储在一维中,并通过常规切片访问列,例如. ...

A = [[1,2,3,4],[5,6,7,8]]     #< assume this 4x2-matrix
B = reduce( operator.add, A ) #< get it one-dimensional

def column1d( matrix, dimX, colIdx ):
  return matrix[colIdx::dimX]

def row1d( matrix, dimX, rowIdx ):
  return matrix[rowIdx:rowIdx+dimX] 

>>> column1d( B, 4, 1 )
[2, 6]
>>> row1d( B, 4, 1 )
[2, 3, 4, 5]

巧妙的是,这真的很快。然而,负索引在这里不起作用!所以你不能通过索引-1访问最后一列或最后一行。

如果您需要负索引,您可以稍微调整访问函数,例如。

def column1d( matrix, dimX, colIdx ):
  return matrix[colIdx % dimX::dimX]

def row1d( matrix, dimX, dimY, rowIdx ):
  rowIdx = (rowIdx % dimY) * dimX
  return matrix[rowIdx:rowIdx+dimX]

其他回答

另一种使用矩阵的方法

>>> from numpy import matrix
>>> a = [ [1,2,3],[4,5,6],[7,8,9] ]
>>> matrix(a).transpose()[1].getA()[0]
array([2, 5, 8])
>>> matrix(a).transpose()[0].getA()[0]
array([1, 4, 7])

您是否使用了NumPy数组?Python有array模块,但不支持多维数组。普通的Python列表也是一维的。

然而,如果你有一个简单的二维列表,像这样:

A = [[1,2,3,4],
     [5,6,7,8]]

然后你可以像这样提取一个列:

def column(matrix, i):
    return [row[i] for row in matrix]

提取第二列(索引1):

>>> column(A, 1)
[2, 6]

或者简单地说:

>>> [row[1] for row in A]
[2, 6]

如果你在Python中有一个二维数组(不是numpy),你可以像这样提取所有的列,

data = [
['a', 1, 2], 
['b', 3, 4], 
['c', 5, 6]
]

columns = list(zip(*data))

print("column[0] = {}".format(columns[0]))
print("column[1] = {}".format(columns[1]))
print("column[2] = {}".format(columns[2]))

执行这段代码会得到,

>>> print("column[0] = {}".format(columns[0]))
column[0] = ('a', 'b', 'c')

>>> print("column[1] = {}".format(columns[1]))
column[1] = (1, 3, 5)

>>> print("column[2] = {}".format(columns[2]))
column[2] = (2, 4, 6)

尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:

map(None, *[(1,2,3,), (4,5,), (6,)])

结果:

[(1, 4, 6), (2, 5, None), (3, None, None)]

第一列如下:

map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)
def get_col(arr, col):
    return map(lambda x : x[col], arr)

a = [[1,2,3,4], [5,6,7,8], [9,10,11,12],[13,14,15,16]]

print get_col(a, 3)

Python中的map函数是另一种方法。