有人知道如何在Python中从多维数组中提取列吗?


当前回答

我更喜欢下一个提示: 将矩阵命名为matrix_a并使用column_number,例如:

import numpy as np
matrix_a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
column_number=2

# you can get the row from transposed matrix - it will be a column:
col=matrix_a.transpose()[column_number]

其他回答

点击这里查看详情!

a = [[1, 2], [2, 3], [3, 4]]
a2 = zip(*a)
a2[0]

它和上面的是一样的,只是它更整洁一些 zip可以完成这项工作,但需要单个数组作为参数,*a语法将多维数组解压缩为单个数组参数

尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:

map(None, *[(1,2,3,), (4,5,), (6,)])

结果:

[(1, 4, 6), (2, 5, None), (3, None, None)]

第一列如下:

map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)

我认为你想从一个数组中提取一个列,比如下面的数组

import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

现在如果你想要得到格式中的第三列

D=array[[3],
[7],
[11]]

然后你需要首先把数组变成一个矩阵

B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)

现在你可以做基于元素的计算就像你在excel中做的一样。

如果你想抓取多个列,可以使用slice:

 a = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
    print(a[:, [1, 2]])
[[2 3]
[5 6]
[8 9]]

假设我们有nxm矩阵(n行m列)5行4列

matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]

要在python中提取列,我们可以像这样使用列表推导式

[ [row[i] for row in matrix] for in range(4) ]

你可以用矩阵的列数来替换4。 结果是

,10,14,18,5,9,13,17 [[1], [2], [3,7,11,15,19], [4,8,12,16,20]]