有人知道如何在Python中从多维数组中提取列吗?


当前回答

如果你在Python中有一个二维数组(不是numpy),你可以像这样提取所有的列,

data = [
['a', 1, 2], 
['b', 3, 4], 
['c', 5, 6]
]

columns = list(zip(*data))

print("column[0] = {}".format(columns[0]))
print("column[1] = {}".format(columns[1]))
print("column[2] = {}".format(columns[2]))

执行这段代码会得到,

>>> print("column[0] = {}".format(columns[0]))
column[0] = ('a', 'b', 'c')

>>> print("column[1] = {}".format(columns[1]))
column[1] = (1, 3, 5)

>>> print("column[2] = {}".format(columns[2]))
column[2] = (2, 4, 6)

其他回答

假设我们有nxm矩阵(n行m列)5行4列

matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]

要在python中提取列,我们可以像这样使用列表推导式

[ [row[i] for row in matrix] for in range(4) ]

你可以用矩阵的列数来替换4。 结果是

,10,14,18,5,9,13,17 [[1], [2], [3,7,11,15,19], [4,8,12,16,20]]

我认为你想从一个数组中提取一个列,比如下面的数组

import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

现在如果你想要得到格式中的第三列

D=array[[3],
[7],
[11]]

然后你需要首先把数组变成一个矩阵

B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)

现在你可以做基于元素的计算就像你在excel中做的一样。

只要使用转置(),就可以像求行一样简单地求列

matrix=np.array(originalMatrix).transpose()
print matrix[NumberOfColumns]

我更喜欢下一个提示: 将矩阵命名为matrix_a并使用column_number,例如:

import numpy as np
matrix_a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
column_number=2

# you can get the row from transposed matrix - it will be a column:
col=matrix_a.transpose()[column_number]
>>> x = arange(20).reshape(4,5)
>>> x array([[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14],
        [15, 16, 17, 18, 19]])

如果你想要第二列,你可以用

>>> x[:, 1]
array([ 1,  6, 11, 16])