有人知道如何在Python中从多维数组中提取列吗?
当前回答
点击这里查看详情!
a = [[1, 2], [2, 3], [3, 4]]
a2 = zip(*a)
a2[0]
它和上面的是一样的,只是它更整洁一些 zip可以完成这项工作,但需要单个数组作为参数,*a语法将多维数组解压缩为单个数组参数
其他回答
所有列从一个矩阵到一个新的列表:
N = len(matrix)
column_list = [ [matrix[row][column] for row in range(N)] for column in range(N) ]
尽管使用zip(*iterable)来转置一个嵌套列表,如果嵌套列表的长度不同,你也可以使用以下方法:
map(None, *[(1,2,3,), (4,5,), (6,)])
结果:
[(1, 4, 6), (2, 5, None), (3, None, None)]
第一列如下:
map(None, *[(1,2,3,), (4,5,), (6,)])[0]
#>(1, 4, 6)
如果你有一个数组
a = [[1, 2], [2, 3], [3, 4]]
然后像这样提取第一列:
[row[0] for row in a]
结果是这样的:
[1, 2, 3]
你也可以用这个:
values = np.array([[1,2,3],[4,5,6]])
values[...,0] # first column
#[1,4]
注意:这对于内置数组和未对齐的数组无效(例如np.array([[1,2,3],[4,5,6,7]]))
嗯,有点晚了……
如果性能很重要,你的数据是矩形的,你也可以将它存储在一维中,并通过常规切片访问列,例如. ...
A = [[1,2,3,4],[5,6,7,8]] #< assume this 4x2-matrix
B = reduce( operator.add, A ) #< get it one-dimensional
def column1d( matrix, dimX, colIdx ):
return matrix[colIdx::dimX]
def row1d( matrix, dimX, rowIdx ):
return matrix[rowIdx:rowIdx+dimX]
>>> column1d( B, 4, 1 )
[2, 6]
>>> row1d( B, 4, 1 )
[2, 3, 4, 5]
巧妙的是,这真的很快。然而,负索引在这里不起作用!所以你不能通过索引-1访问最后一列或最后一行。
如果您需要负索引,您可以稍微调整访问函数,例如。
def column1d( matrix, dimX, colIdx ):
return matrix[colIdx % dimX::dimX]
def row1d( matrix, dimX, dimY, rowIdx ):
rowIdx = (rowIdx % dimY) * dimX
return matrix[rowIdx:rowIdx+dimX]