我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

其他回答

我可以给出这个问题的递归Python解决方案吗?

def choose_iter(elements, length):
    for i in xrange(len(elements)):
        if length == 1:
            yield (elements[i],)
        else:
            for next in choose_iter(elements[i+1:], length-1):
                yield (elements[i],) + next
def choose(l, k):
    return list(choose_iter(l, k))

使用示例:

>>> len(list(choose_iter("abcdefgh",3)))
56

我喜欢它的简洁。

一个简洁的Javascript解决方案:

Array.prototype.combine=function combine(k){    
    var toCombine=this;
    var last;
    function combi(n,comb){             
        var combs=[];
        for ( var x=0,y=comb.length;x<y;x++){
            for ( var l=0,m=toCombine.length;l<m;l++){      
                combs.push(comb[x]+toCombine[l]);           
            }
        }
        if (n<k-1){
            n++;
            combi(n,combs);
        } else{last=combs;}
    }
    combi(1,toCombine);
    return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);
#include <stdio.h>

unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
    unsigned int finished = 0;
    unsigned int changed = 0;
    unsigned int i;

    if (k > 0) {
        for (i = k - 1; !finished && !changed; i--) {
            if (ar[i] < (n - 1) - (k - 1) + i) {
                /* Increment this element */
                ar[i]++;
                if (i < k - 1) {
                    /* Turn the elements after it into a linear sequence */
                    unsigned int j;
                    for (j = i + 1; j < k; j++) {
                        ar[j] = ar[j - 1] + 1;
                    }
                }
                changed = 1;
            }
            finished = i == 0;
        }
        if (!changed) {
            /* Reset to first combination */
            for (i = 0; i < k; i++) {
                ar[i] = i;
            }
        }
    }
    return changed;
}

typedef void(*printfn)(const void *, FILE *);

void print_set(const unsigned int *ar, size_t len, const void **elements,
    const char *brackets, printfn print, FILE *fptr)
{
    unsigned int i;
    fputc(brackets[0], fptr);
    for (i = 0; i < len; i++) {
        print(elements[ar[i]], fptr);
        if (i < len - 1) {
            fputs(", ", fptr);
        }
    }
    fputc(brackets[1], fptr);
}

int main(void)
{
    unsigned int numbers[] = { 0, 1, 2 };
    char *elements[] = { "a", "b", "c", "d", "e" };
    const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
    const unsigned int n = sizeof(elements) / sizeof(const char*);

    do {
        print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
        putchar('\n');
    } while (next_combination(numbers, n, k));
    getchar();
    return 0;
}

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。

在c++中,以下例程将生成range [first,last)之间的长度距离(first,k)的所有组合:

#include <algorithm>

template <typename Iterator>
bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
   /* Credits: Mark Nelson http://marknelson.us */
   if ((first == last) || (first == k) || (last == k))
      return false;
   Iterator i1 = first;
   Iterator i2 = last;
   ++i1;
   if (last == i1)
      return false;
   i1 = last;
   --i1;
   i1 = k;
   --i2;
   while (first != i1)
   {
      if (*--i1 < *i2)
      {
         Iterator j = k;
         while (!(*i1 < *j)) ++j;
         std::iter_swap(i1,j);
         ++i1;
         ++j;
         i2 = k;
         std::rotate(i1,j,last);
         while (last != j)
         {
            ++j;
            ++i2;
         }
         std::rotate(k,i2,last);
         return true;
      }
   }
   std::rotate(first,k,last);
   return false;
}

它可以这样使用:

#include <string>
#include <iostream>

int main()
{
    std::string s = "12345";
    std::size_t comb_size = 3;
    do
    {
        std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl;
    } while (next_combination(s.begin(), s.begin() + comb_size, s.end()));

    return 0;
}

这将打印以下内容:

123
124
125
134
135
145
234
235
245
345