我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

其他回答

如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:

SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter

这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。

如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。

Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。

下面是我的Scala解决方案:

def combinations[A](s: List[A], k: Int): List[List[A]] = 
  if (k > s.length) Nil
  else if (k == 1) s.map(List(_))
  else combinations(s.tail, k - 1).map(s.head :: _) ::: combinations(s.tail, k)

简短快速的c#实现

public static IEnumerable<IEnumerable<T>> Combinations<T>(IEnumerable<T> elements, int k)
{
    return Combinations(elements.Count(), k).Select(p => p.Select(q => elements.ElementAt(q)));                
}      

public static List<int[]> Combinations(int setLenght, int subSetLenght) //5, 3
{
    var result = new List<int[]>();

    var lastIndex = subSetLenght - 1;
    var dif = setLenght - subSetLenght;
    var prevSubSet = new int[subSetLenght];
    var lastSubSet = new int[subSetLenght];
    for (int i = 0; i < subSetLenght; i++)
    {
        prevSubSet[i] = i;
        lastSubSet[i] = i + dif;
    }

    while(true)
    {
        //add subSet ad result set
        var n = new int[subSetLenght];
        for (int i = 0; i < subSetLenght; i++)
            n[i] = prevSubSet[i];

        result.Add(n);

        if (prevSubSet[0] >= lastSubSet[0])
            break;

        //start at index 1 because index 0 is checked and breaking in the current loop
        int j = 1;
        for (; j < subSetLenght; j++)
        {
            if (prevSubSet[j] >= lastSubSet[j])
            {
                prevSubSet[j - 1]++;

                for (int p = j; p < subSetLenght; p++)
                    prevSubSet[p] = prevSubSet[p - 1] + 1;

                break;
            }
        }

        if (j > lastIndex)
            prevSubSet[lastIndex]++;
    }

    return result;
}

我可以给出这个问题的递归Python解决方案吗?

def choose_iter(elements, length):
    for i in xrange(len(elements)):
        if length == 1:
            yield (elements[i],)
        else:
            for next in choose_iter(elements[i+1:], length-1):
                yield (elements[i],) + next
def choose(l, k):
    return list(choose_iter(l, k))

使用示例:

>>> len(list(choose_iter("abcdefgh",3)))
56

我喜欢它的简洁。

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)