我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

最近在IronScripter网站上有一个PowerShell挑战,需要一个n- choice -k的解决方案。我在那里发布了一个解决方案,但这里有一个更通用的版本。

AllK开关用于控制输出是长度为ChooseK的组合,还是长度为1到ChooseK的组合。 Prefix参数实际上是输出字符串的累加器,但其效果是为初始调用传递的值实际上会为每一行输出添加前缀。

function Get-NChooseK
{

    [CmdletBinding()]

    Param
    (

        [String[]]
        $ArrayN

    ,   [Int]
        $ChooseK

    ,   [Switch]
        $AllK

    ,   [String]
        $Prefix = ''

    )

    PROCESS
    {
        # Validate the inputs
        $ArrayN = $ArrayN | Sort-Object -Unique

        If ($ChooseK -gt $ArrayN.Length)
        {
            Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
        }

        # Control the output
        $firstK = If ($AllK) { 1 } Else { $ChooseK }

        # Get combinations
        $firstK..$ChooseK | ForEach-Object {

            $thisK = $_

            $ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
                If ($thisK -eq 0)
                {
                    Write-Output ($Prefix+$_)
                }
                Else
                {
                    Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
                }
            }

        }
    }

}

例如:

PS C:\>$ArrayN  = 'E','B','C','A','D'
PS C:\>$ChooseK = 3
PS C:\>Get-NChooseK -ArrayN $ArrayN -ChooseK $ChooseK
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

其他回答

算法:

从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。

在c#中:

void Main()
{
    var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };

    var kElement = 2;

    for(var i = 1; i < Math.Pow(2, set.Length); i++) {
        var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
        var cnt = Regex.Matches(Regex.Escape(result),  "1").Count; 
        if (cnt == kElement) {
            for(int j = 0; j < set.Length; j++)
                if ( Char.GetNumericValue(result[j]) == 1)
                    Console.Write(set[j]);
            Console.WriteLine();
        }
    }
}

为什么它能起作用?

在n元素集的子集和n位序列之间存在双射。

这意味着我们可以通过数数序列来计算出有多少个子集。

例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。

我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。

如果只需要k个元素的结果,则只在k位为“on”时打印。

(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)

(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)

我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。

我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。

例如:

1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。

代码示例:

public class StringCombinationK {   
    static void combk(String s , int k){
        int n = s.length();
        int num = 1<<n;
        int j=0;
        int count=0;

        for(int i=0;i<num;i++){
            if (countSet(i)==k){
                setBits(i,j,s);
                count++;
                System.out.println();
            }
        }

        System.out.println(count);
    }

    static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
        if(i==0){
            return;
        }

        if(i%2==1){
            System.out.print(s.charAt(j));                  
        }

        setBits(i/2,j+1,s);
    }

    static int countSet(int i){ //count number of set bits
        if( i==0){
            return 0;
        }

        return (i%2==0? 0:1) + countSet(i/2);
    }

    public static void main(String[] arhs){
        String s = "abcdefgh";
        int k=3;
        combk(s,k);
    }
}

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}

你可以使用Asif算法来生成所有可能的组合。这可能是最简单和最有效的方法。你可以在这里查看媒体文章。

让我们看看JavaScript中的实现。

function Combinations( arr, r ) {
    // To avoid object referencing, cloning the array.
    arr = arr && arr.slice() || [];

    var len = arr.length;

    if( !len || r > len || !r )
        return [ [] ];
    else if( r === len ) 
        return [ arr ];

    if( r === len ) return arr.reduce( ( x, v ) => {
        x.push( [ v ] );

        return x;
    }, [] );

    var head = arr.shift();

    return Combinations( arr, r - 1 ).map( x => {
        x.unshift( head );

        return x;
    } ).concat( Combinations( arr, r ) );
}

// Now do your stuff.

console.log( Combinations( [ 'a', 'b', 'c', 'd', 'e' ], 3 ) );

简短javascript版本(es5)

令combine = (list, n) => N == 0 ? [[]]: 列表。flatMap((e, i) => 结合( 列表。切片(i + 1) N - 1 ).Map (c => [e].concat(c)) ); Let res = combine([1,2,3,4], 3); res.forEach(e => console.log(e.join()));