我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
下面是我的Scala解决方案:
def combinations[A](s: List[A], k: Int): List[List[A]] =
if (k > s.length) Nil
else if (k == 1) s.map(List(_))
else combinations(s.tail, k - 1).map(s.head :: _) ::: combinations(s.tail, k)
其他回答
下面是一个方法,它从一个随机长度的字符串中给出指定大小的所有组合。类似于昆玛斯的解,但适用于不同的输入和k。
代码可以更改为换行,即'dab'从输入'abcd' w k=3。
public void run(String data, int howMany){
choose(data, howMany, new StringBuffer(), 0);
}
//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
if (result.length()==k){
System.out.println(result.toString());
return;
}
for (int i=startIndex; i<data.length(); i++){
result.append(data.charAt(i));
choose(data,k,result, i+1);
result.setLength(result.length()-1);
}
}
"abcde"的输出:
ABC abd ace ade BCD bce bde cde
赶时髦,发布另一个解决方案。这是一个通用的Java实现。输入:(int k)是要选择的元素数量,(List<T> List)是要选择的列表。返回一个组合列表(list < list <T>>)。
public static <T> List<List<T>> getCombinations(int k, List<T> list) {
List<List<T>> combinations = new ArrayList<List<T>>();
if (k == 0) {
combinations.add(new ArrayList<T>());
return combinations;
}
for (int i = 0; i < list.size(); i++) {
T element = list.get(i);
List<T> rest = getSublist(list, i+1);
for (List<T> previous : getCombinations(k-1, rest)) {
previous.add(element);
combinations.add(previous);
}
}
return combinations;
}
public static <T> List<T> getSublist(List<T> list, int i) {
List<T> sublist = new ArrayList<T>();
for (int j = i; j < list.size(); j++) {
sublist.add(list.get(j));
}
return sublist;
}
这是一个c++解决方案,我提出使用递归和位移位。它也可以在C语言中工作。
void r_nCr(unsigned int startNum, unsigned int bitVal, unsigned int testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
unsigned int n = (startNum - bitVal) << 1;
n += bitVal ? 1 : 0;
for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
cout << (n >> (i - 1) & 1);
cout << endl;
if (!(n & testNum) && n != startNum)
r_nCr(n, bitVal, testNum);
if (bitVal && bitVal < testNum)
r_nCr(startNum, bitVal >> 1, testNum);
}
你可以在这里找到这是如何工作的解释。
PowerShell解决方案:
function Get-NChooseK
{
<#
.SYNOPSIS
Returns all the possible combinations by choosing K items at a time from N possible items.
.DESCRIPTION
Returns all the possible combinations by choosing K items at a time from N possible items.
The combinations returned do not consider the order of items as important i.e. 123 is considered to be the same combination as 231, etc.
.PARAMETER ArrayN
The array of items to choose from.
.PARAMETER ChooseK
The number of items to choose.
.PARAMETER AllK
Includes combinations for all lesser values of K above zero i.e. 1 to K.
.PARAMETER Prefix
String that will prefix each line of the output.
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3
123
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 3 -AllK
1
2
3
12
13
23
123
.EXAMPLE
PS C:\> Get-NChooseK -ArrayN '1','2','3' -ChooseK 2 -Prefix 'Combo: '
Combo: 12
Combo: 13
Combo: 23
.NOTES
Author : nmbell
#>
# Use cmdlet binding
[CmdletBinding()]
# Declare parameters
Param
(
[String[]]
$ArrayN
, [Int]
$ChooseK
, [Switch]
$AllK
, [String]
$Prefix = ''
)
BEGIN
{
}
PROCESS
{
# Validate the inputs
$ArrayN = $ArrayN | Sort-Object -Unique
If ($ChooseK -gt $ArrayN.Length)
{
Write-Error "Can't choose $ChooseK items when only $($ArrayN.Length) are available." -ErrorAction Stop
}
# Control the output
$firstK = If ($AllK) { 1 } Else { $ChooseK }
# Get combinations
$firstK..$ChooseK | ForEach-Object {
$thisK = $_
$ArrayN[0..($ArrayN.Length-($thisK--))] | ForEach-Object {
If ($thisK -eq 0)
{
Write-Output ($Prefix+$_)
}
Else
{
Get-NChooseK -Array ($ArrayN[($ArrayN.IndexOf($_)+1)..($ArrayN.Length-1)]) -Choose $thisK -AllK:$false -Prefix ($Prefix+$_)
}
}
}
}
END
{
}
}
例如:
PS C:\>Get-NChooseK -ArrayN 'A','B','C','D','E' -ChooseK 3
ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE
最近在IronScripter网站上发布了一个类似于这个问题的挑战,在那里你可以找到我的链接和其他一些解决方案。
简短的java解决方案:
import java.util.Arrays;
public class Combination {
public static void main(String[] args){
String[] arr = {"A","B","C","D","E","F"};
combinations2(arr, 3, 0, new String[3]);
}
static void combinations2(String[] arr, int len, int startPosition, String[] result){
if (len == 0){
System.out.println(Arrays.toString(result));
return;
}
for (int i = startPosition; i <= arr.length-len; i++){
result[result.length - len] = arr[i];
combinations2(arr, len-1, i+1, result);
}
}
}
结果将是
[A, B, C]
[A, B, D]
[A, B, E]
[A, B, F]
[A, C, D]
[A, C, E]
[A, C, F]
[A, D, E]
[A, D, F]
[A, E, F]
[B, C, D]
[B, C, E]
[B, C, F]
[B, D, E]
[B, D, F]
[B, E, F]
[C, D, E]
[C, D, F]
[C, E, F]
[D, E, F]