我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
下面是我的Scala解决方案:
def combinations[A](s: List[A], k: Int): List[List[A]] =
if (k > s.length) Nil
else if (k == 1) s.map(List(_))
else combinations(s.tail, k - 1).map(s.head :: _) ::: combinations(s.tail, k)
其他回答
下面的递归算法从有序集中选取所有k元素组合:
选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。
对集合中的每一个i进行上述迭代。
为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。
如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:
SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter
这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。
如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。
Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。
我发现这个线程很有用,我想我会添加一个Javascript解决方案,你可以弹出到Firebug。取决于你的JS引擎,如果起始字符串很大,可能会花一点时间。
function string_recurse(active, rest) {
if (rest.length == 0) {
console.log(active);
} else {
string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
string_recurse(active, rest.substring(1, rest.length));
}
}
string_recurse("", "abc");
输出如下:
abc
ab
ac
a
bc
b
c
Here's some simple code that prints all the C(n,m) combinations. It works by initializing and moving a set of array indices that point to next valid combination. The indices are initialized to point to the lowest m indices (lexicographically the smallest combination). Then on, starting with the m-th index, we try to move the indices forward. if an index has reached its limit, we try the previous index (all the way down to index 1). If we can move an index forward, then we reset all greater indices.
m=(rand()%n)+1; // m will vary from 1 to n
for (i=0;i<n;i++) a[i]=i+1;
// we want to print all possible C(n,m) combinations of selecting m objects out of n
printf("Printing C(%d,%d) possible combinations ...\n", n,m);
// This is an adhoc algo that keeps m pointers to the next valid combination
for (i=0;i<m;i++) p[i]=i; // the p[.] contain indices to the a vector whose elements constitute next combination
done=false;
while (!done)
{
// print combination
for (i=0;i<m;i++) printf("%2d ", a[p[i]]);
printf("\n");
// update combination
// method: start with p[m-1]. try to increment it. if it is already at the end, then try moving p[m-2] ahead.
// if this is possible, then reset p[m-1] to 1 more than (the new) p[m-2].
// if p[m-2] can not also be moved, then try p[m-3]. move that ahead. then reset p[m-2] and p[m-1].
// repeat all the way down to p[0]. if p[0] can not also be moved, then we have generated all combinations.
j=m-1;
i=1;
move_found=false;
while ((j>=0) && !move_found)
{
if (p[j]<(n-i))
{
move_found=true;
p[j]++; // point p[j] to next index
for (k=j+1;k<m;k++)
{
p[k]=p[j]+(k-j);
}
}
else
{
j--;
i++;
}
}
if (!move_found) done=true;
}
下面是一个简单易懂的递归c++解决方案:
#include<vector>
using namespace std;
template<typename T>
void ksubsets(const vector<T>& arr, unsigned left, unsigned idx,
vector<T>& lst, vector<vector<T>>& res)
{
if (left < 1) {
res.push_back(lst);
return;
}
for (unsigned i = idx; i < arr.size(); i++) {
lst.push_back(arr[i]);
ksubsets(arr, left - 1, i + 1, lst, res);
lst.pop_back();
}
}
int main()
{
vector<int> arr = { 1, 2, 3, 4, 5 };
unsigned left = 3;
vector<int> lst;
vector<vector<int>> res;
ksubsets<int>(arr, left, 0, lst, res);
// now res has all the combinations
}