我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

void combine(char a[], int N, int M, int m, int start, char result[]) {
    if (0 == m) {
        for (int i = M - 1; i >= 0; i--)
            std::cout << result[i];
        std::cout << std::endl;
        return;
    }
    for (int i = start; i < (N - m + 1); i++) {
        result[m - 1] = a[i];
        combine(a, N, M, m-1, i+1, result);
    }
}

void combine(char a[], int N, int M) {
    char *result = new char[M];
    combine(a, N, M, M, 0, result);
    delete[] result;
}

在第一个函数中,m表示还需要选择多少个,start表示必须从数组中的哪个位置开始选择。

其他回答

用c#的另一个解决方案:

 static List<List<T>> GetCombinations<T>(List<T> originalItems, int combinationLength)
    {
        if (combinationLength < 1)
        {
            return null;
        }

        return CreateCombinations<T>(new List<T>(), 0, combinationLength, originalItems);
    }

 static List<List<T>> CreateCombinations<T>(List<T> initialCombination, int startIndex, int length, List<T> originalItems)
    {
        List<List<T>> combinations = new List<List<T>>();
        for (int i = startIndex; i < originalItems.Count - length + 1; i++)
        {
            List<T> newCombination = new List<T>(initialCombination);
            newCombination.Add(originalItems[i]);
            if (length > 1)
            {
                List<List<T>> newCombinations = CreateCombinations(newCombination, i + 1, length - 1, originalItems);
                combinations.AddRange(newCombinations);
            }
            else
            {
                combinations.Add(newCombination);
            }
        }

        return combinations;
    }

用法示例:

   List<char> initialArray = new List<char>() { 'a','b','c','d'};
   int combinationLength = 3;
   List<List<char>> combinations = GetCombinations(initialArray, combinationLength);

赶时髦,发布另一个解决方案。这是一个通用的Java实现。输入:(int k)是要选择的元素数量,(List<T> List)是要选择的列表。返回一个组合列表(list < list <T>>)。

public static <T> List<List<T>> getCombinations(int k, List<T> list) {
    List<List<T>> combinations = new ArrayList<List<T>>();
    if (k == 0) {
        combinations.add(new ArrayList<T>());
        return combinations;
    }
    for (int i = 0; i < list.size(); i++) {
        T element = list.get(i);
        List<T> rest = getSublist(list, i+1);
        for (List<T> previous : getCombinations(k-1, rest)) {
            previous.add(element);
            combinations.add(previous);
        }
    }
    return combinations;
}

public static <T> List<T> getSublist(List<T> list, int i) {
    List<T> sublist = new ArrayList<T>();
    for (int j = i; j < list.size(); j++) {
        sublist.add(list.get(j));
    }
    return sublist;
}

c#简单算法。 (我发布它是因为我试图使用你们上传的那个,但由于某种原因我无法编译它——扩展一个类?所以我自己写了一个,以防别人遇到和我一样的问题)。 顺便说一下,除了基本的编程,我对c#没什么兴趣,但是这个工作得很好。

public static List<List<int>> GetSubsetsOfSizeK(List<int> lInputSet, int k)
        {
            List<List<int>> lSubsets = new List<List<int>>();
            GetSubsetsOfSizeK_rec(lInputSet, k, 0, new List<int>(), lSubsets);
            return lSubsets;
        }

public static void GetSubsetsOfSizeK_rec(List<int> lInputSet, int k, int i, List<int> lCurrSet, List<List<int>> lSubsets)
        {
            if (lCurrSet.Count == k)
            {
                lSubsets.Add(lCurrSet);
                return;
            }

            if (i >= lInputSet.Count)
                return;

            List<int> lWith = new List<int>(lCurrSet);
            List<int> lWithout = new List<int>(lCurrSet);
            lWith.Add(lInputSet[i++]);

            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWith, lSubsets);
            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWithout, lSubsets);
        }

GetSubsetsOfSizeK(set of type List<int>, integer k)

您可以修改它以遍历您正在处理的任何内容。

好运!

另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。

public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
    if (k < 0 || values.Length < k)
        yield break; // invalid parameters, no combinations possible

    // generate the initial combination indices
    var combIndices = new int[k];
    for (var i = 0; i < k; i++)
    {
        combIndices[i] = i;
    }

    while (true)
    {
        // return next combination
        var combination = new T[k];
        for (var i = 0; i < k; i++)
        {
            combination[i] = values[combIndices[i]];
        }
        yield return combination;

        // find first index to update
        var indexToUpdate = k - 1;
        while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
        {
            indexToUpdate--;
        }

        if (indexToUpdate < 0)
            yield break; // done

        // update combination indices
        for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
        {
            combIndices[indexToUpdate] = combIndex;
        }
    }
}

测试代码:

foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
    System.Console.WriteLine(String.Join(" ", combination));
}

输出:

a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e

简短javascript版本(es5)

令combine = (list, n) => N == 0 ? [[]]: 列表。flatMap((e, i) => 结合( 列表。切片(i + 1) N - 1 ).Map (c => [e].concat(c)) ); Let res = combine([1,2,3,4], 3); res.forEach(e => console.log(e.join()));