我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
static IEnumerable<string> Combinations(List<string> characters, int length)
{
for (int i = 0; i < characters.Count; i++)
{
// only want 1 character, just return this one
if (length == 1)
yield return characters[i];
// want more than one character, return this one plus all combinations one shorter
// only use characters after the current one for the rest of the combinations
else
foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1))
yield return characters[i] + next;
}
}
其他回答
这是一个优雅的Scala通用实现,如99个Scala问题所述。
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
下面是一个方法,它从一个随机长度的字符串中给出指定大小的所有组合。类似于昆玛斯的解,但适用于不同的输入和k。
代码可以更改为换行,即'dab'从输入'abcd' w k=3。
public void run(String data, int howMany){
choose(data, howMany, new StringBuffer(), 0);
}
//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
if (result.length()==k){
System.out.println(result.toString());
return;
}
for (int i=startIndex; i<data.length(); i++){
result.append(data.charAt(i));
choose(data,k,result, i+1);
result.setLength(result.length()-1);
}
}
"abcde"的输出:
ABC abd ace ade BCD bce bde cde
下面是Clojure版本,它使用了我在OCaml实现答案中描述的相同算法:
(defn select
([items]
(select items 0 (inc (count items))))
([items n1 n2]
(reduce concat
(map #(select % items)
(range n1 (inc n2)))))
([n items]
(let [
lmul (fn [a list-of-lists-of-bs]
(map #(cons a %) list-of-lists-of-bs))
]
(if (= n (count items))
(list items)
(if (empty? items)
items
(concat
(select n (rest items))
(lmul (first items) (select (dec n) (rest items)))))))))
它提供了三种调用方法:
(a)按问题要求,选出n项:
user=> (count (select 3 "abcdefgh"))
56
(b) n1至n2个选定项目:
user=> (select '(1 2 3 4) 2 3)
((3 4) (2 4) (2 3) (1 4) (1 3) (1 2) (2 3 4) (1 3 4) (1 2 4) (1 2 3))
(c)在0至所选项目的集合大小之间:
user=> (select '(1 2 3))
(() (3) (2) (1) (2 3) (1 3) (1 2) (1 2 3))
void combine(char a[], int N, int M, int m, int start, char result[]) {
if (0 == m) {
for (int i = M - 1; i >= 0; i--)
std::cout << result[i];
std::cout << std::endl;
return;
}
for (int i = start; i < (N - m + 1); i++) {
result[m - 1] = a[i];
combine(a, N, M, m-1, i+1, result);
}
}
void combine(char a[], int N, int M) {
char *result = new char[M];
combine(a, N, M, M, 0, result);
delete[] result;
}
在第一个函数中,m表示还需要选择多少个,start表示必须从数组中的哪个位置开始选择。
我有一个用于project euler的排列算法,用python编写:
def missing(miss,src):
"Returns the list of items in src not present in miss"
return [i for i in src if i not in miss]
def permutation_gen(n,l):
"Generates all the permutations of n items of the l list"
for i in l:
if n<=1: yield [i]
r = [i]
for j in permutation_gen(n-1,missing([i],l)): yield r+j
If
n<len(l)
你应该有所有你需要的组合,没有重复,你需要吗?
它是一个生成器,所以你可以这样使用它:
for comb in permutation_gen(3,list("ABCDEFGH")):
print comb