我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是Clojure版本,它使用了我在OCaml实现答案中描述的相同算法:

(defn select
  ([items]
     (select items 0 (inc (count items))))
  ([items n1 n2]
     (reduce concat
             (map #(select % items)
                  (range n1 (inc n2)))))
  ([n items]
     (let [
           lmul (fn [a list-of-lists-of-bs]
                     (map #(cons a %) list-of-lists-of-bs))
           ]
       (if (= n (count items))
         (list items)
         (if (empty? items)
           items
           (concat
            (select n (rest items))
            (lmul (first items) (select (dec n) (rest items))))))))) 

它提供了三种调用方法:

(a)按问题要求,选出n项:

  user=> (count (select 3 "abcdefgh"))
  56

(b) n1至n2个选定项目:

user=> (select '(1 2 3 4) 2 3)
((3 4) (2 4) (2 3) (1 4) (1 3) (1 2) (2 3 4) (1 3 4) (1 2 4) (1 2 3))

(c)在0至所选项目的集合大小之间:

user=> (select '(1 2 3))
(() (3) (2) (1) (2 3) (1 3) (1 2) (1 2 3))

其他回答

我知道这个问题已经有很多答案了,但我想在JavaScript中添加我自己的贡献,它由两个函数组成——一个生成原始n元素集的所有可能不同的k子集,另一个使用第一个函数生成原始n元素集的幂集。

下面是这两个函数的代码:

//Generate combination subsets from a base set of elements (passed as an array). This function should generate an
//array containing nCr elements, where nCr = n!/[r! (n-r)!].

//Arguments:

//[1] baseSet :     The base set to create the subsets from (e.g., ["a", "b", "c", "d", "e", "f"])
//[2] cnt :         The number of elements each subset is to contain (e.g., 3)

function MakeCombinationSubsets(baseSet, cnt)
{
    var bLen = baseSet.length;
    var indices = [];
    var subSet = [];
    var done = false;
    var result = [];        //Contains all the combination subsets generated
    var done = false;
    var i = 0;
    var idx = 0;
    var tmpIdx = 0;
    var incr = 0;
    var test = 0;
    var newIndex = 0;
    var inBounds = false;
    var tmpIndices = [];
    var checkBounds = false;

    //First, generate an array whose elements are indices into the base set ...

    for (i=0; i<cnt; i++)

        indices.push(i);

    //Now create a clone of this array, to be used in the loop itself ...

        tmpIndices = [];

        tmpIndices = tmpIndices.concat(indices);

    //Now initialise the loop ...

    idx = cnt - 1;      //point to the last element of the indices array
    incr = 0;
    done = false;
    while (!done)
    {
    //Create the current subset ...

        subSet = [];    //Make sure we begin with a completely empty subset before continuing ...

        for (i=0; i<cnt; i++)

            subSet.push(baseSet[tmpIndices[i]]);    //Create the current subset, using items selected from the
                                                    //base set, using the indices array (which will change as we
                                                    //continue scanning) ...

    //Add the subset thus created to the result set ...

        result.push(subSet);

    //Now update the indices used to select the elements of the subset. At the start, idx will point to the
    //rightmost index in the indices array, but the moment that index moves out of bounds with respect to the
    //base set, attention will be shifted to the next left index.

        test = tmpIndices[idx] + 1;

        if (test >= bLen)
        {
        //Here, we're about to move out of bounds with respect to the base set. We therefore need to scan back,
        //and update indices to the left of the current one. Find the leftmost index in the indices array that
        //isn't going to  move out of bounds with respect to the base set ...

            tmpIdx = idx - 1;
            incr = 1;

            inBounds = false;       //Assume at start that the index we're checking in the loop below is out of bounds
            checkBounds = true;

            while (checkBounds)
            {
                if (tmpIdx < 0)
                {
                    checkBounds = false;    //Exit immediately at this point
                }
                else
                {
                    newIndex = tmpIndices[tmpIdx] + 1;
                    test = newIndex + incr;

                    if (test >= bLen)
                    {
                    //Here, incrementing the current selected index will take that index out of bounds, so
                    //we move on to the next index to the left ...

                        tmpIdx--;
                        incr++;
                    }
                    else
                    {
                    //Here, the index will remain in bounds if we increment it, so we
                    //exit the loop and signal that we're in bounds ...

                        inBounds = true;
                        checkBounds = false;

                    //End if/else
                    }

                //End if 
                }               
            //End while
            }
    //At this point, if we'er still in bounds, then we continue generating subsets, but if not, we abort immediately.

            if (!inBounds)
                done = true;
            else
            {
            //Here, we're still in bounds. We need to update the indices accordingly. NOTE: at this point, although a
            //left positioned index in the indices array may still be in bounds, incrementing it to generate indices to
            //the right may take those indices out of bounds. We therefore need to check this as we perform the index
            //updating of the indices array.

                tmpIndices[tmpIdx] = newIndex;

                inBounds = true;
                checking = true;
                i = tmpIdx + 1;

                while (checking)
                {
                    test = tmpIndices[i - 1] + 1;   //Find out if incrementing the left adjacent index takes it out of bounds

                    if (test >= bLen)
                    {
                        inBounds = false;           //If we move out of bounds, exit NOW ...
                        checking = false;
                    }
                    else
                    {
                        tmpIndices[i] = test;       //Otherwise, update the indices array ...

                        i++;                        //Now move on to the next index to the right in the indices array ...

                        checking = (i < cnt);       //And continue until we've exhausted all the indices array elements ...
                    //End if/else
                    }
                //End while
                }
                //At this point, if the above updating of the indices array has moved any of its elements out of bounds,
                //we abort subset construction from this point ...
                if (!inBounds)
                    done = true;
            //End if/else
            }
        }
        else
        {
        //Here, the rightmost index under consideration isn't moving out of bounds with respect to the base set when
        //we increment it, so we simply increment and continue the loop ...
            tmpIndices[idx] = test;
        //End if
        }
    //End while
    }
    return(result);
//End function
}


function MakePowerSet(baseSet)
{
    var bLen = baseSet.length;
    var result = [];
    var i = 0;
    var partialSet = [];

    result.push([]);    //add the empty set to the power set

    for (i=1; i<bLen; i++)
    {
        partialSet = MakeCombinationSubsets(baseSet, i);
        result = result.concat(partialSet);
    //End i loop
    }
    //Now, finally, add the base set itself to the power set to make it complete ...

    partialSet = [];
    partialSet.push(baseSet);
    result = result.concat(partialSet);

    return(result);
    //End function
}

我用集合["a", "b", "c", "d", "e", "f"]作为基本集进行了测试,并运行代码以产生以下幂集:

[]
["a"]
["b"]
["c"]
["d"]
["e"]
["f"]
["a","b"]
["a","c"]
["a","d"]
["a","e"]
["a","f"]
["b","c"]
["b","d"]
["b","e"]
["b","f"]
["c","d"]
["c","e"]
["c","f"]
["d","e"]
["d","f"]
["e","f"]
["a","b","c"]
["a","b","d"]
["a","b","e"]
["a","b","f"]
["a","c","d"]
["a","c","e"]
["a","c","f"]
["a","d","e"]
["a","d","f"]
["a","e","f"]
["b","c","d"]
["b","c","e"]
["b","c","f"]
["b","d","e"]
["b","d","f"]
["b","e","f"]
["c","d","e"]
["c","d","f"]
["c","e","f"]
["d","e","f"]
["a","b","c","d"]
["a","b","c","e"]
["a","b","c","f"]
["a","b","d","e"]
["a","b","d","f"]
["a","b","e","f"]
["a","c","d","e"]
["a","c","d","f"]
["a","c","e","f"]
["a","d","e","f"]
["b","c","d","e"]
["b","c","d","f"]
["b","c","e","f"]
["b","d","e","f"]
["c","d","e","f"]
["a","b","c","d","e"]
["a","b","c","d","f"]
["a","b","c","e","f"]
["a","b","d","e","f"]
["a","c","d","e","f"]
["b","c","d","e","f"]
["a","b","c","d","e","f"]

只要复制粘贴这两个函数“原样”,你就有了提取n元素集的不同k子集所需的基本知识,并生成该n元素集的幂集(如果你愿意的话)。

我并不是说这很优雅,只是说它在经过大量的测试(并在调试阶段将空气变为蓝色:)之后可以工作。

下面是c++中的迭代算法,它不使用STL,也不使用递归,也不使用条件嵌套循环。这样更快,它不执行任何元素交换,也不会给堆栈带来递归负担,还可以通过分别用mallloc()、free()和printf()替换new、delete和std::cout轻松地移植到ANSI C。

如果你想用不同或更长的字母显示元素,那么改变*字母参数以指向不同于"abcdefg"的字符串。

void OutputArrayChar(unsigned int* ka, size_t n, const char *alphabet) {
    for (int i = 0; i < n; i++)
        std::cout << alphabet[ka[i]] << ",";
    std::cout << endl;
}
    

void GenCombinations(const unsigned int N, const unsigned int K, const char *alphabet) {
    unsigned int *ka = new unsigned int [K];  //dynamically allocate an array of UINTs
    unsigned int ki = K-1;                    //Point ki to the last elemet of the array
    ka[ki] = N-1;                             //Prime the last elemet of the array.
    
    while (true) {
        unsigned int tmp = ka[ki];  //Optimization to prevent reading ka[ki] repeatedly

        while (ki)                  //Fill to the left with consecutive descending values (blue squares)
            ka[--ki] = --tmp;
        OutputArrayChar(ka, K, alphabet);
    
        while (--ka[ki] == ki) {    //Decrement and check if the resulting value equals the index (bright green squares)
            OutputArrayChar(ka, K, alphabet);
            if (++ki == K) {      //Exit condition (all of the values in the array are flush to the left)
                delete[] ka;
                return;
            }                   
        }
    }
}
    

int main(int argc, char *argv[])
{
    GenCombinations(7, 4, "abcdefg");
    return 0;
}

重要提示:字母参数*必须指向至少N个字符的字符串。你也可以传递一个在其他地方定义的字符串地址。

组合:从“7选4”中选择。

一个简洁的Javascript解决方案:

Array.prototype.combine=function combine(k){    
    var toCombine=this;
    var last;
    function combi(n,comb){             
        var combs=[];
        for ( var x=0,y=comb.length;x<y;x++){
            for ( var l=0,m=toCombine.length;l<m;l++){      
                combs.push(comb[x]+toCombine[l]);           
            }
        }
        if (n<k-1){
            n++;
            combi(n,combs);
        } else{last=combs;}
    }
    combi(1,toCombine);
    return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);

不需要进行集合操作。这个问题几乎和循环K个嵌套循环一样,但你必须小心索引和边界(忽略Java和OOP的东西):

 public class CombinationsGen {
    private final int n;
    private final int k;
    private int[] buf;

    public CombinationsGen(int n, int k) {
        this.n = n;
        this.k = k;
    }

    public void combine(Consumer<int[]> consumer) {
        buf = new int[k];
        rec(0, 0, consumer);
    }

    private void rec(int index, int next, Consumer<int[]> consumer) {
        int max = n - index;

        if (index == k - 1) {
            for (int i = 0; i < max && next < n; i++) {
                buf[index] = next;
                next++;
                consumer.accept(buf);
            }
        } else {
            for (int i = 0; i < max && next + index < n; i++) {
                buf[index] = next;
                next++;
                rec(index + 1, next, consumer);
            }
        }
    }
}

像这样使用:

 CombinationsGen gen = new CombinationsGen(5, 2);

 AtomicInteger total = new AtomicInteger();
 gen.combine(arr -> {
     System.out.println(Arrays.toString(arr));
     total.incrementAndGet();
 });
 System.out.println(total);

获得预期的结果:

[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
10

最后,将索引映射到您可能拥有的任何数据集。

下面是一个使用宏的Lisp方法。这适用于Common Lisp,也适用于其他Lisp方言。

下面的代码创建了'n'个嵌套循环,并为列表lst中的'n'个元素的每个组合执行任意代码块(存储在body变量中)。变量var指向一个包含用于循环的变量的列表。

(defmacro do-combinations ((var lst num) &body body)
  (loop with syms = (loop repeat num collect (gensym))
        for i on syms
        for k = `(loop for ,(car i) on (cdr ,(cadr i))
                         do (let ((,var (list ,@(reverse syms)))) (progn ,@body)))
                then `(loop for ,(car i) on ,(if (cadr i) `(cdr ,(cadr i)) lst) do ,k)
        finally (return k)))

让我们看看…

(macroexpand-1 '(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p))))

(LOOP FOR #:G3217 ON '(1 2 3 4 5 6 7) DO
 (LOOP FOR #:G3216 ON (CDR #:G3217) DO
  (LOOP FOR #:G3215 ON (CDR #:G3216) DO
   (LOOP FOR #:G3214 ON (CDR #:G3215) DO
    (LET ((P (LIST #:G3217 #:G3216 #:G3215 #:G3214)))
     (PROGN (PPRINT (MAPCAR #'CAR P))))))))

(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p)))

(1 2 3 4)
(1 2 3 5)
(1 2 3 6)
...

由于默认情况下不存储组合,因此存储空间保持在最小值。选择主体代码而不是存储所有结果的可能性也提供了更大的灵活性。