我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是c++中的迭代算法,它不使用STL,也不使用递归,也不使用条件嵌套循环。这样更快,它不执行任何元素交换,也不会给堆栈带来递归负担,还可以通过分别用mallloc()、free()和printf()替换new、delete和std::cout轻松地移植到ANSI C。

如果你想用不同或更长的字母显示元素,那么改变*字母参数以指向不同于"abcdefg"的字符串。

void OutputArrayChar(unsigned int* ka, size_t n, const char *alphabet) {
    for (int i = 0; i < n; i++)
        std::cout << alphabet[ka[i]] << ",";
    std::cout << endl;
}
    

void GenCombinations(const unsigned int N, const unsigned int K, const char *alphabet) {
    unsigned int *ka = new unsigned int [K];  //dynamically allocate an array of UINTs
    unsigned int ki = K-1;                    //Point ki to the last elemet of the array
    ka[ki] = N-1;                             //Prime the last elemet of the array.
    
    while (true) {
        unsigned int tmp = ka[ki];  //Optimization to prevent reading ka[ki] repeatedly

        while (ki)                  //Fill to the left with consecutive descending values (blue squares)
            ka[--ki] = --tmp;
        OutputArrayChar(ka, K, alphabet);
    
        while (--ka[ki] == ki) {    //Decrement and check if the resulting value equals the index (bright green squares)
            OutputArrayChar(ka, K, alphabet);
            if (++ki == K) {      //Exit condition (all of the values in the array are flush to the left)
                delete[] ka;
                return;
            }                   
        }
    }
}
    

int main(int argc, char *argv[])
{
    GenCombinations(7, 4, "abcdefg");
    return 0;
}

重要提示:字母参数*必须指向至少N个字符的字符串。你也可以传递一个在其他地方定义的字符串地址。

组合:从“7选4”中选择。

其他回答

这个答案怎么样……这将打印所有长度为3的组合…它可以推广到任何长度… 工作代码…

#include<iostream>
#include<string>
using namespace std;

void combination(string a,string dest){
int l = dest.length();
if(a.empty() && l  == 3 ){
 cout<<dest<<endl;}
else{
  if(!a.empty() && dest.length() < 3 ){
     combination(a.substr(1,a.length()),dest+a[0]);}
  if(!a.empty() && dest.length() <= 3 ){
      combination(a.substr(1,a.length()),dest);}
 }

 }

 int main(){
 string demo("abcd");
 combination(demo,"");
 return 0;
 }

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}
static IEnumerable<string> Combinations(List<string> characters, int length)
{
    for (int i = 0; i < characters.Count; i++)
    {
        // only want 1 character, just return this one
        if (length == 1)
            yield return characters[i];

        // want more than one character, return this one plus all combinations one shorter
        // only use characters after the current one for the rest of the combinations
        else
            foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1))
                yield return characters[i] + next;
    }
}

这是我对javascript的贡献(没有递归)

set = ["q0", "q1", "q2", "q3"]
collector = []


function comb(num) {
  results = []
  one_comb = []
  for (i = set.length - 1; i >= 0; --i) {
    tmp = Math.pow(2, i)
    quotient = parseInt(num / tmp)
    results.push(quotient)
    num = num % tmp
  }
  k = 0
  for (i = 0; i < results.length; ++i)
    if (results[i]) {
      ++k
      one_comb.push(set[i])
    }
  if (collector[k] == undefined)
    collector[k] = []
  collector[k].push(one_comb)
}


sum = 0
for (i = 0; i < set.length; ++i)
  sum += Math.pow(2, i)
 for (ii = sum; ii > 0; --ii)
  comb(ii)
 cnt = 0
for (i = 1; i < collector.length; ++i) {
  n = 0
  for (j = 0; j < collector[i].length; ++j)
    document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
  document.write("<hr>")
}   

这是一个优雅的Scala通用实现,如99个Scala问题所述。

object P26 {
  def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] = 
    ls match {
      case Nil => Nil
      case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
    }

  def combinations[A](n: Int, ls: List[A]): List[List[A]] =
    if (n == 0) List(Nil)
    else flatMapSublists(ls) { sl =>
      combinations(n - 1, sl.tail) map {sl.head :: _}
    }
}