我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是c++中的迭代算法,它不使用STL,也不使用递归,也不使用条件嵌套循环。这样更快,它不执行任何元素交换,也不会给堆栈带来递归负担,还可以通过分别用mallloc()、free()和printf()替换new、delete和std::cout轻松地移植到ANSI C。

如果你想用不同或更长的字母显示元素,那么改变*字母参数以指向不同于"abcdefg"的字符串。

void OutputArrayChar(unsigned int* ka, size_t n, const char *alphabet) {
    for (int i = 0; i < n; i++)
        std::cout << alphabet[ka[i]] << ",";
    std::cout << endl;
}
    

void GenCombinations(const unsigned int N, const unsigned int K, const char *alphabet) {
    unsigned int *ka = new unsigned int [K];  //dynamically allocate an array of UINTs
    unsigned int ki = K-1;                    //Point ki to the last elemet of the array
    ka[ki] = N-1;                             //Prime the last elemet of the array.
    
    while (true) {
        unsigned int tmp = ka[ki];  //Optimization to prevent reading ka[ki] repeatedly

        while (ki)                  //Fill to the left with consecutive descending values (blue squares)
            ka[--ki] = --tmp;
        OutputArrayChar(ka, K, alphabet);
    
        while (--ka[ki] == ki) {    //Decrement and check if the resulting value equals the index (bright green squares)
            OutputArrayChar(ka, K, alphabet);
            if (++ki == K) {      //Exit condition (all of the values in the array are flush to the left)
                delete[] ka;
                return;
            }                   
        }
    }
}
    

int main(int argc, char *argv[])
{
    GenCombinations(7, 4, "abcdefg");
    return 0;
}

重要提示:字母参数*必须指向至少N个字符的字符串。你也可以传递一个在其他地方定义的字符串地址。

组合:从“7选4”中选择。

其他回答

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

Lisp宏为所有值r(每次取)生成代码

(defmacro txaat (some-list taken-at-a-time)
  (let* ((vars (reverse (truncate-list '(a b c d e f g h i j) taken-at-a-time))))
    `(
      ,@(loop for i below taken-at-a-time 
           for j in vars 
           with nested = nil 
           finally (return nested) 
           do
             (setf 
              nested 
              `(loop for ,j from
                    ,(if (< i (1- (length vars)))
                         `(1+ ,(nth (1+ i) vars))
                         0)
                  below (- (length ,some-list) ,i)
                    ,@(if (equal i 0) 
                          `(collect 
                               (list
                                ,@(loop for k from (1- taken-at-a-time) downto 0
                                     append `((nth ,(nth k vars) ,some-list)))))
                          `(append ,nested))))))))

So,

CL-USER> (macroexpand-1 '(txaat '(a b c d) 1))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 1)
    COLLECT (LIST (NTH A '(A B C D))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 2))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 2)
      APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 1)
                   COLLECT (LIST (NTH A '(A B C D)) (NTH B '(A B C D)))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 3))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 3)
      APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 2)
                   APPEND (LOOP FOR C FROM (1+ B) TO (- (LENGTH '(A B C D)) 1)
                                COLLECT (LIST (NTH A '(A B C D))
                                              (NTH B '(A B C D))
                                              (NTH C '(A B C D))))))
T

CL-USER> 

And,

CL-USER> (txaat '(a b c d) 1)
((A) (B) (C) (D))
CL-USER> (txaat '(a b c d) 2)
((A B) (A C) (A D) (B C) (B D) (C D))
CL-USER> (txaat '(a b c d) 3)
((A B C) (A B D) (A C D) (B C D))
CL-USER> (txaat '(a b c d) 4)
((A B C D))
CL-USER> (txaat '(a b c d) 5)
NIL
CL-USER> (txaat '(a b c d) 0)
NIL
CL-USER> 

算法:

从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。

在c#中:

void Main()
{
    var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };

    var kElement = 2;

    for(var i = 1; i < Math.Pow(2, set.Length); i++) {
        var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
        var cnt = Regex.Matches(Regex.Escape(result),  "1").Count; 
        if (cnt == kElement) {
            for(int j = 0; j < set.Length; j++)
                if ( Char.GetNumericValue(result[j]) == 1)
                    Console.Write(set[j]);
            Console.WriteLine();
        }
    }
}

为什么它能起作用?

在n元素集的子集和n位序列之间存在双射。

这意味着我们可以通过数数序列来计算出有多少个子集。

例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。

我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。

如果只需要k个元素的结果,则只在k位为“on”时打印。

(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)

(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)

#include <stdio.h>

unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
    unsigned int finished = 0;
    unsigned int changed = 0;
    unsigned int i;

    if (k > 0) {
        for (i = k - 1; !finished && !changed; i--) {
            if (ar[i] < (n - 1) - (k - 1) + i) {
                /* Increment this element */
                ar[i]++;
                if (i < k - 1) {
                    /* Turn the elements after it into a linear sequence */
                    unsigned int j;
                    for (j = i + 1; j < k; j++) {
                        ar[j] = ar[j - 1] + 1;
                    }
                }
                changed = 1;
            }
            finished = i == 0;
        }
        if (!changed) {
            /* Reset to first combination */
            for (i = 0; i < k; i++) {
                ar[i] = i;
            }
        }
    }
    return changed;
}

typedef void(*printfn)(const void *, FILE *);

void print_set(const unsigned int *ar, size_t len, const void **elements,
    const char *brackets, printfn print, FILE *fptr)
{
    unsigned int i;
    fputc(brackets[0], fptr);
    for (i = 0; i < len; i++) {
        print(elements[ar[i]], fptr);
        if (i < len - 1) {
            fputs(", ", fptr);
        }
    }
    fputc(brackets[1], fptr);
}

int main(void)
{
    unsigned int numbers[] = { 0, 1, 2 };
    char *elements[] = { "a", "b", "c", "d", "e" };
    const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
    const unsigned int n = sizeof(elements) / sizeof(const char*);

    do {
        print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
        putchar('\n');
    } while (next_combination(numbers, n, k));
    getchar();
    return 0;
}