我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)

其他回答

我发现这个线程很有用,我想我会添加一个Javascript解决方案,你可以弹出到Firebug。取决于你的JS引擎,如果起始字符串很大,可能会花一点时间。

function string_recurse(active, rest) {
    if (rest.length == 0) {
        console.log(active);
    } else {
        string_recurse(active + rest.charAt(0), rest.substring(1, rest.length));
        string_recurse(active, rest.substring(1, rest.length));
    }
}
string_recurse("", "abc");

输出如下:

abc
ab
ac
a
bc
b
c

一个简洁的Javascript解决方案:

Array.prototype.combine=function combine(k){    
    var toCombine=this;
    var last;
    function combi(n,comb){             
        var combs=[];
        for ( var x=0,y=comb.length;x<y;x++){
            for ( var l=0,m=toCombine.length;l<m;l++){      
                combs.push(comb[x]+toCombine[l]);           
            }
        }
        if (n<k-1){
            n++;
            combi(n,combs);
        } else{last=combs;}
    }
    combi(1,toCombine);
    return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);

这里你有一个用c#编写的该算法的惰性评估版本:

    static bool nextCombination(int[] num, int n, int k)
    {
        bool finished, changed;

        changed = finished = false;

        if (k > 0)
        {
            for (int i = k - 1; !finished && !changed; i--)
            {
                if (num[i] < (n - 1) - (k - 1) + i)
                {
                    num[i]++;
                    if (i < k - 1)
                    {
                        for (int j = i + 1; j < k; j++)
                        {
                            num[j] = num[j - 1] + 1;
                        }
                    }
                    changed = true;
                }
                finished = (i == 0);
            }
        }

        return changed;
    }

    static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
    {
        T[] elem = elements.ToArray();
        int size = elem.Length;

        if (k <= size)
        {
            int[] numbers = new int[k];
            for (int i = 0; i < k; i++)
            {
                numbers[i] = i;
            }

            do
            {
                yield return numbers.Select(n => elem[n]);
            }
            while (nextCombination(numbers, size, k));
        }
    }

及测试部分:

    static void Main(string[] args)
    {
        int k = 3;
        var t = new[] { "dog", "cat", "mouse", "zebra"};

        foreach (IEnumerable<string> i in Combinations(t, k))
        {
            Console.WriteLine(string.Join(",", i));
        }
    }

希望这对你有帮助!


另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。

private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
    if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
        return true;

    if (num[k - 1] + 1 == n)
        return false;

    ++num[k - 1];
    for (int i = 0; i < k - 1; ++i)
        num[i] = i;

    return true;
}

例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

但如果你跑

int[] nums = new int[k];
for (int i = 0; i < k; ++i)
    nums[i] = i;
do
{
    Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));

你会得到这个(为了清晰起见,我添加了空行):

0 1 2

0 1 3
0 2 3
1 2 3

0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4

它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。

也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):

def combis(str:String, k:Int):Array[String] = {
  str.combinations(k).toArray 
}

使用这样的方法:

  println(combis("abcd",2).toList)

会产生:

  List(ab, ac, ad, bc, bd, cd)

下面是一个简单易懂的递归c++解决方案:

#include<vector>
using namespace std;

template<typename T>
void ksubsets(const vector<T>& arr, unsigned left, unsigned idx,
    vector<T>& lst, vector<vector<T>>& res)
{
    if (left < 1) {
        res.push_back(lst);
        return;
    }
    for (unsigned i = idx; i < arr.size(); i++) {
        lst.push_back(arr[i]);
        ksubsets(arr, left - 1, i + 1, lst, res);
        lst.pop_back();
    }
}

int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5 };
    unsigned left = 3;
    vector<int> lst;
    vector<vector<int>> res;
    ksubsets<int>(arr, left, 0, lst, res);
    // now res has all the combinations
}