我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
在Python中,利用递归的优势和所有事情都是通过引用完成的事实。对于非常大的集合,这将占用大量内存,但其优点是初始集合可以是一个复杂的对象。它只会找到唯一的组合。
import copy
def find_combinations( length, set, combinations = None, candidate = None ):
# recursive function to calculate all unique combinations of unique values
# from [set], given combinations of [length]. The result is populated
# into the 'combinations' list.
#
if combinations == None:
combinations = []
if candidate == None:
candidate = []
for item in set:
if item in candidate:
# this item already appears in the current combination somewhere.
# skip it
continue
attempt = copy.deepcopy(candidate)
attempt.append(item)
# sorting the subset is what gives us completely unique combinations,
# so that [1, 2, 3] and [1, 3, 2] will be treated as equals
attempt.sort()
if len(attempt) < length:
# the current attempt at finding a new combination is still too
# short, so add another item to the end of the set
# yay recursion!
find_combinations( length, set, combinations, attempt )
else:
# the current combination attempt is the right length. If it
# already appears in the list of found combinations then we'll
# skip it.
if attempt in combinations:
continue
else:
# otherwise, we append it to the list of found combinations
# and move on.
combinations.append(attempt)
continue
return len(combinations)
你可以这样使用它。传递'result'是可选的,所以你可以用它来获取可能组合的数量…尽管这样做效率很低(最好通过计算来完成)。
size = 3
set = [1, 2, 3, 4, 5]
result = []
num = find_combinations( size, set, result )
print "size %d results in %d sets" % (size, num)
print "result: %s" % (result,)
您应该从测试数据中得到以下输出:
size 3 results in 10 sets
result: [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]
如果你的集合是这样的,它也会工作得很好:
set = [
[ 'vanilla', 'cupcake' ],
[ 'chocolate', 'pudding' ],
[ 'vanilla', 'pudding' ],
[ 'chocolate', 'cookie' ],
[ 'mint', 'cookie' ]
]
其他回答
作为迭代器对象实现的MetaTrader MQL4非常快速的组合。
代码很容易理解。
我对很多算法进行了基准测试,这个算法真的非常快——大约比大多数next_combination()函数快3倍。
class CombinationsIterator { private: int input_array[]; // 1 2 3 4 5 int index_array[]; // i j k int m_elements; // N int m_indices; // K public: CombinationsIterator(int &src_data[], int k) { m_indices = k; m_elements = ArraySize(src_data); ArrayCopy(input_array, src_data); ArrayResize(index_array, m_indices); // create initial combination (0..k-1) for (int i = 0; i < m_indices; i++) { index_array[i] = i; } } // https://stackoverflow.com/questions/5076695 // bool next_combination(int &item[], int k, int N) bool advance() { int N = m_elements; for (int i = m_indices - 1; i >= 0; --i) { if (index_array[i] < --N) { ++index_array[i]; for (int j = i + 1; j < m_indices; ++j) { index_array[j] = index_array[j - 1] + 1; } return true; } } return false; } void getItems(int &items[]) { // fill items[] from input array for (int i = 0; i < m_indices; i++) { items[i] = input_array[index_array[i]]; } } };
测试上述迭代器类的驱动程序:
//+------------------------------------------------------------------+ //| | //+------------------------------------------------------------------+ // driver program to test above class #define N 5 #define K 3 void OnStart() { int myset[N] = {1, 2, 3, 4, 5}; int items[K]; CombinationsIterator comboIt(myset, K); do { comboIt.getItems(items); printf("%s", ArrayToString(items)); } while (comboIt.advance()); }
输出: 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
为此,我在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
下面是一个例子来说明用法:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
结果:
Word
----
AB
AC
AD
BC
BD
CD
(6 row(s) affected)
假设你的字母数组是这样的:"ABCDEFGH"。你有三个下标(i, j, k)来表示你要用哪个字母来表示当前单词。
A B C D E F G H ^ ^ ^ i j k
首先你改变k,所以下一步看起来像这样:
A B C D E F G H ^ ^ ^ i j k
如果你到达终点,你继续改变j和k。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k
一旦j达到G, i也开始变化。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k ...
用代码写出来是这样的
void print_combinations(const char *string)
{
int i, j, k;
int len = strlen(string);
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
printf("%c%c%c\n", string[i], string[j], string[k]);
}
}
}
我可以给出这个问题的递归Python解决方案吗?
def choose_iter(elements, length):
for i in xrange(len(elements)):
if length == 1:
yield (elements[i],)
else:
for next in choose_iter(elements[i+1:], length-1):
yield (elements[i],) + next
def choose(l, k):
return list(choose_iter(l, k))
使用示例:
>>> len(list(choose_iter("abcdefgh",3)))
56
我喜欢它的简洁。
这个答案怎么样……这将打印所有长度为3的组合…它可以推广到任何长度… 工作代码…
#include<iostream>
#include<string>
using namespace std;
void combination(string a,string dest){
int l = dest.length();
if(a.empty() && l == 3 ){
cout<<dest<<endl;}
else{
if(!a.empty() && dest.length() < 3 ){
combination(a.substr(1,a.length()),dest+a[0]);}
if(!a.empty() && dest.length() <= 3 ){
combination(a.substr(1,a.length()),dest);}
}
}
int main(){
string demo("abcd");
combination(demo,"");
return 0;
}