我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

在Python中,利用递归的优势和所有事情都是通过引用完成的事实。对于非常大的集合,这将占用大量内存,但其优点是初始集合可以是一个复杂的对象。它只会找到唯一的组合。

import copy

def find_combinations( length, set, combinations = None, candidate = None ):
    # recursive function to calculate all unique combinations of unique values
    # from [set], given combinations of [length].  The result is populated
    # into the 'combinations' list.
    #
    if combinations == None:
        combinations = []
    if candidate == None:
        candidate = []

    for item in set:
        if item in candidate:
            # this item already appears in the current combination somewhere.
            # skip it
            continue

        attempt = copy.deepcopy(candidate)
        attempt.append(item)
        # sorting the subset is what gives us completely unique combinations,
        # so that [1, 2, 3] and [1, 3, 2] will be treated as equals
        attempt.sort()

        if len(attempt) < length:
            # the current attempt at finding a new combination is still too
            # short, so add another item to the end of the set
            # yay recursion!
            find_combinations( length, set, combinations, attempt )
        else:
            # the current combination attempt is the right length.  If it
            # already appears in the list of found combinations then we'll
            # skip it.
            if attempt in combinations:
                continue
            else:
                # otherwise, we append it to the list of found combinations
                # and move on.
                combinations.append(attempt)
                continue
    return len(combinations)

你可以这样使用它。传递'result'是可选的,所以你可以用它来获取可能组合的数量…尽管这样做效率很低(最好通过计算来完成)。

size = 3
set = [1, 2, 3, 4, 5]
result = []

num = find_combinations( size, set, result ) 
print "size %d results in %d sets" % (size, num)
print "result: %s" % (result,)

您应该从测试数据中得到以下输出:

size 3 results in 10 sets
result: [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

如果你的集合是这样的,它也会工作得很好:

set = [
    [ 'vanilla', 'cupcake' ],
    [ 'chocolate', 'pudding' ],
    [ 'vanilla', 'pudding' ],
    [ 'chocolate', 'cookie' ],
    [ 'mint', 'cookie' ]
]

其他回答

c#简单算法。 (我发布它是因为我试图使用你们上传的那个,但由于某种原因我无法编译它——扩展一个类?所以我自己写了一个,以防别人遇到和我一样的问题)。 顺便说一下,除了基本的编程,我对c#没什么兴趣,但是这个工作得很好。

public static List<List<int>> GetSubsetsOfSizeK(List<int> lInputSet, int k)
        {
            List<List<int>> lSubsets = new List<List<int>>();
            GetSubsetsOfSizeK_rec(lInputSet, k, 0, new List<int>(), lSubsets);
            return lSubsets;
        }

public static void GetSubsetsOfSizeK_rec(List<int> lInputSet, int k, int i, List<int> lCurrSet, List<List<int>> lSubsets)
        {
            if (lCurrSet.Count == k)
            {
                lSubsets.Add(lCurrSet);
                return;
            }

            if (i >= lInputSet.Count)
                return;

            List<int> lWith = new List<int>(lCurrSet);
            List<int> lWithout = new List<int>(lCurrSet);
            lWith.Add(lInputSet[i++]);

            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWith, lSubsets);
            GetSubsetsOfSizeK_rec(lInputSet, k, i, lWithout, lSubsets);
        }

GetSubsetsOfSizeK(set of type List<int>, integer k)

您可以修改它以遍历您正在处理的任何内容。

好运!

JavaScript,基于生成器,递归方法:

function *nCk(n,k){ for(var i=n-1;i>=k-1;--i) if(k===1) yield [i]; else for(var temp of nCk(i,k-1)){ temp.unshift(i); yield temp; } } function test(){ try{ var n=parseInt(ninp.value); var k=parseInt(kinp.value); log.innerText=""; var stop=Date.now()+1000; if(k>=1) for(var res of nCk(n,k)) if(Date.now()<stop) log.innerText+=JSON.stringify(res)+" "; else{ log.innerText+="1 second passed, stopping here."; break; } }catch(ex){} } n:<input id="ninp" oninput="test()"> &gt;= k:<input id="kinp" oninput="test()"> &gt;= 1 <div id="log"></div>

通过这种方式(减少i和unshift()),它以递减的顺序生成组合和组合内的元素,有点赏心悦目。 测试在1秒后停止,因此输入奇怪的数字是相对安全的。

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}

如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:

SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter

这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。

如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。

Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。

一个简洁的Javascript解决方案:

Array.prototype.combine=function combine(k){    
    var toCombine=this;
    var last;
    function combi(n,comb){             
        var combs=[];
        for ( var x=0,y=comb.length;x<y;x++){
            for ( var l=0,m=toCombine.length;l<m;l++){      
                combs.push(comb[x]+toCombine[l]);           
            }
        }
        if (n<k-1){
            n++;
            combi(n,combs);
        } else{last=combs;}
    }
    combi(1,toCombine);
    return last;
}
// Example:
// var toCombine=['a','b','c'];
// var results=toCombine.combine(4);