我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}

其他回答

我知道这个问题已经有很多答案了,但我想在JavaScript中添加我自己的贡献,它由两个函数组成——一个生成原始n元素集的所有可能不同的k子集,另一个使用第一个函数生成原始n元素集的幂集。

下面是这两个函数的代码:

//Generate combination subsets from a base set of elements (passed as an array). This function should generate an
//array containing nCr elements, where nCr = n!/[r! (n-r)!].

//Arguments:

//[1] baseSet :     The base set to create the subsets from (e.g., ["a", "b", "c", "d", "e", "f"])
//[2] cnt :         The number of elements each subset is to contain (e.g., 3)

function MakeCombinationSubsets(baseSet, cnt)
{
    var bLen = baseSet.length;
    var indices = [];
    var subSet = [];
    var done = false;
    var result = [];        //Contains all the combination subsets generated
    var done = false;
    var i = 0;
    var idx = 0;
    var tmpIdx = 0;
    var incr = 0;
    var test = 0;
    var newIndex = 0;
    var inBounds = false;
    var tmpIndices = [];
    var checkBounds = false;

    //First, generate an array whose elements are indices into the base set ...

    for (i=0; i<cnt; i++)

        indices.push(i);

    //Now create a clone of this array, to be used in the loop itself ...

        tmpIndices = [];

        tmpIndices = tmpIndices.concat(indices);

    //Now initialise the loop ...

    idx = cnt - 1;      //point to the last element of the indices array
    incr = 0;
    done = false;
    while (!done)
    {
    //Create the current subset ...

        subSet = [];    //Make sure we begin with a completely empty subset before continuing ...

        for (i=0; i<cnt; i++)

            subSet.push(baseSet[tmpIndices[i]]);    //Create the current subset, using items selected from the
                                                    //base set, using the indices array (which will change as we
                                                    //continue scanning) ...

    //Add the subset thus created to the result set ...

        result.push(subSet);

    //Now update the indices used to select the elements of the subset. At the start, idx will point to the
    //rightmost index in the indices array, but the moment that index moves out of bounds with respect to the
    //base set, attention will be shifted to the next left index.

        test = tmpIndices[idx] + 1;

        if (test >= bLen)
        {
        //Here, we're about to move out of bounds with respect to the base set. We therefore need to scan back,
        //and update indices to the left of the current one. Find the leftmost index in the indices array that
        //isn't going to  move out of bounds with respect to the base set ...

            tmpIdx = idx - 1;
            incr = 1;

            inBounds = false;       //Assume at start that the index we're checking in the loop below is out of bounds
            checkBounds = true;

            while (checkBounds)
            {
                if (tmpIdx < 0)
                {
                    checkBounds = false;    //Exit immediately at this point
                }
                else
                {
                    newIndex = tmpIndices[tmpIdx] + 1;
                    test = newIndex + incr;

                    if (test >= bLen)
                    {
                    //Here, incrementing the current selected index will take that index out of bounds, so
                    //we move on to the next index to the left ...

                        tmpIdx--;
                        incr++;
                    }
                    else
                    {
                    //Here, the index will remain in bounds if we increment it, so we
                    //exit the loop and signal that we're in bounds ...

                        inBounds = true;
                        checkBounds = false;

                    //End if/else
                    }

                //End if 
                }               
            //End while
            }
    //At this point, if we'er still in bounds, then we continue generating subsets, but if not, we abort immediately.

            if (!inBounds)
                done = true;
            else
            {
            //Here, we're still in bounds. We need to update the indices accordingly. NOTE: at this point, although a
            //left positioned index in the indices array may still be in bounds, incrementing it to generate indices to
            //the right may take those indices out of bounds. We therefore need to check this as we perform the index
            //updating of the indices array.

                tmpIndices[tmpIdx] = newIndex;

                inBounds = true;
                checking = true;
                i = tmpIdx + 1;

                while (checking)
                {
                    test = tmpIndices[i - 1] + 1;   //Find out if incrementing the left adjacent index takes it out of bounds

                    if (test >= bLen)
                    {
                        inBounds = false;           //If we move out of bounds, exit NOW ...
                        checking = false;
                    }
                    else
                    {
                        tmpIndices[i] = test;       //Otherwise, update the indices array ...

                        i++;                        //Now move on to the next index to the right in the indices array ...

                        checking = (i < cnt);       //And continue until we've exhausted all the indices array elements ...
                    //End if/else
                    }
                //End while
                }
                //At this point, if the above updating of the indices array has moved any of its elements out of bounds,
                //we abort subset construction from this point ...
                if (!inBounds)
                    done = true;
            //End if/else
            }
        }
        else
        {
        //Here, the rightmost index under consideration isn't moving out of bounds with respect to the base set when
        //we increment it, so we simply increment and continue the loop ...
            tmpIndices[idx] = test;
        //End if
        }
    //End while
    }
    return(result);
//End function
}


function MakePowerSet(baseSet)
{
    var bLen = baseSet.length;
    var result = [];
    var i = 0;
    var partialSet = [];

    result.push([]);    //add the empty set to the power set

    for (i=1; i<bLen; i++)
    {
        partialSet = MakeCombinationSubsets(baseSet, i);
        result = result.concat(partialSet);
    //End i loop
    }
    //Now, finally, add the base set itself to the power set to make it complete ...

    partialSet = [];
    partialSet.push(baseSet);
    result = result.concat(partialSet);

    return(result);
    //End function
}

我用集合["a", "b", "c", "d", "e", "f"]作为基本集进行了测试,并运行代码以产生以下幂集:

[]
["a"]
["b"]
["c"]
["d"]
["e"]
["f"]
["a","b"]
["a","c"]
["a","d"]
["a","e"]
["a","f"]
["b","c"]
["b","d"]
["b","e"]
["b","f"]
["c","d"]
["c","e"]
["c","f"]
["d","e"]
["d","f"]
["e","f"]
["a","b","c"]
["a","b","d"]
["a","b","e"]
["a","b","f"]
["a","c","d"]
["a","c","e"]
["a","c","f"]
["a","d","e"]
["a","d","f"]
["a","e","f"]
["b","c","d"]
["b","c","e"]
["b","c","f"]
["b","d","e"]
["b","d","f"]
["b","e","f"]
["c","d","e"]
["c","d","f"]
["c","e","f"]
["d","e","f"]
["a","b","c","d"]
["a","b","c","e"]
["a","b","c","f"]
["a","b","d","e"]
["a","b","d","f"]
["a","b","e","f"]
["a","c","d","e"]
["a","c","d","f"]
["a","c","e","f"]
["a","d","e","f"]
["b","c","d","e"]
["b","c","d","f"]
["b","c","e","f"]
["b","d","e","f"]
["c","d","e","f"]
["a","b","c","d","e"]
["a","b","c","d","f"]
["a","b","c","e","f"]
["a","b","d","e","f"]
["a","c","d","e","f"]
["b","c","d","e","f"]
["a","b","c","d","e","f"]

只要复制粘贴这两个函数“原样”,你就有了提取n元素集的不同k子集所需的基本知识,并生成该n元素集的幂集(如果你愿意的话)。

我并不是说这很优雅,只是说它在经过大量的测试(并在调试阶段将空气变为蓝色:)之后可以工作。

下面是一个使用宏的Lisp方法。这适用于Common Lisp,也适用于其他Lisp方言。

下面的代码创建了'n'个嵌套循环,并为列表lst中的'n'个元素的每个组合执行任意代码块(存储在body变量中)。变量var指向一个包含用于循环的变量的列表。

(defmacro do-combinations ((var lst num) &body body)
  (loop with syms = (loop repeat num collect (gensym))
        for i on syms
        for k = `(loop for ,(car i) on (cdr ,(cadr i))
                         do (let ((,var (list ,@(reverse syms)))) (progn ,@body)))
                then `(loop for ,(car i) on ,(if (cadr i) `(cdr ,(cadr i)) lst) do ,k)
        finally (return k)))

让我们看看…

(macroexpand-1 '(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p))))

(LOOP FOR #:G3217 ON '(1 2 3 4 5 6 7) DO
 (LOOP FOR #:G3216 ON (CDR #:G3217) DO
  (LOOP FOR #:G3215 ON (CDR #:G3216) DO
   (LOOP FOR #:G3214 ON (CDR #:G3215) DO
    (LET ((P (LIST #:G3217 #:G3216 #:G3215 #:G3214)))
     (PROGN (PPRINT (MAPCAR #'CAR P))))))))

(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p)))

(1 2 3 4)
(1 2 3 5)
(1 2 3 6)
...

由于默认情况下不存储组合,因此存储空间保持在最小值。选择主体代码而不是存储所有结果的可能性也提供了更大的灵活性。

这是一个简单的JS解决方案:

function getAllCombinations(n, k, f1) { indexes = Array(k); for (let i =0; i< k; i++) { indexes[i] = i; } var total = 1; f1(indexes); while (indexes[0] !== n-k) { total++; getNext(n, indexes); f1(indexes); } return {total}; } function getNext(n, vec) { const k = vec.length; vec[k-1]++; for (var i=0; i<k; i++) { var currentIndex = k-i-1; if (vec[currentIndex] === n - i) { var nextIndex = k-i-2; vec[nextIndex]++; vec[currentIndex] = vec[nextIndex] + 1; } } for (var i=1; i<k; i++) { if (vec[i] === n - (k-i - 1)) { vec[i] = vec[i-1] + 1; } } return vec; } let start = new Date(); let result = getAllCombinations(10, 3, indexes => console.log(indexes)); let runTime = new Date() - start; console.log({ result, runTime });

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}

下面是我的JavaScript解决方案,通过使用reduce/map,它消除了几乎所有变量,功能更强大

function combinations(arr, size) { var len = arr.length; if (size > len) return []; if (!size) return [[]]; if (size == len) return [arr]; return arr.reduce(function (acc, val, i) { var res = combinations(arr.slice(i + 1), size - 1) .map(function (comb) { return [val].concat(comb); }); return acc.concat(res); }, []); } var combs = combinations([1,2,3,4,5,6,7,8],3); combs.map(function (comb) { document.body.innerHTML += comb.toString() + '<br />'; }); document.body.innerHTML += '<br /> Total combinations = ' + combs.length;