我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
这个答案怎么样……这将打印所有长度为3的组合…它可以推广到任何长度… 工作代码…
#include<iostream>
#include<string>
using namespace std;
void combination(string a,string dest){
int l = dest.length();
if(a.empty() && l == 3 ){
cout<<dest<<endl;}
else{
if(!a.empty() && dest.length() < 3 ){
combination(a.substr(1,a.length()),dest+a[0]);}
if(!a.empty() && dest.length() <= 3 ){
combination(a.substr(1,a.length()),dest);}
}
}
int main(){
string demo("abcd");
combination(demo,"");
return 0;
}
其他回答
也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):
def combis(str:String, k:Int):Array[String] = {
str.combinations(k).toArray
}
使用这样的方法:
println(combis("abcd",2).toList)
会产生:
List(ab, ac, ad, bc, bd, cd)
这是一个优雅的Scala通用实现,如99个Scala问题所述。
object P26 {
def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] =
ls match {
case Nil => Nil
case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
}
def combinations[A](n: Int, ls: List[A]): List[List[A]] =
if (n == 0) List(Nil)
else flatMapSublists(ls) { sl =>
combinations(n - 1, sl.tail) map {sl.head :: _}
}
}
#include <stdio.h>
unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
unsigned int finished = 0;
unsigned int changed = 0;
unsigned int i;
if (k > 0) {
for (i = k - 1; !finished && !changed; i--) {
if (ar[i] < (n - 1) - (k - 1) + i) {
/* Increment this element */
ar[i]++;
if (i < k - 1) {
/* Turn the elements after it into a linear sequence */
unsigned int j;
for (j = i + 1; j < k; j++) {
ar[j] = ar[j - 1] + 1;
}
}
changed = 1;
}
finished = i == 0;
}
if (!changed) {
/* Reset to first combination */
for (i = 0; i < k; i++) {
ar[i] = i;
}
}
}
return changed;
}
typedef void(*printfn)(const void *, FILE *);
void print_set(const unsigned int *ar, size_t len, const void **elements,
const char *brackets, printfn print, FILE *fptr)
{
unsigned int i;
fputc(brackets[0], fptr);
for (i = 0; i < len; i++) {
print(elements[ar[i]], fptr);
if (i < len - 1) {
fputs(", ", fptr);
}
}
fputc(brackets[1], fptr);
}
int main(void)
{
unsigned int numbers[] = { 0, 1, 2 };
char *elements[] = { "a", "b", "c", "d", "e" };
const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
const unsigned int n = sizeof(elements) / sizeof(const char*);
do {
print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
putchar('\n');
} while (next_combination(numbers, n, k));
getchar();
return 0;
}
下面是一个coffeescript实现
combinations: (list, n) ->
permuations = Math.pow(2, list.length) - 1
out = []
combinations = []
while permuations
out = []
for i in [0..list.length]
y = ( 1 << i )
if( y & permuations and (y isnt permuations))
out.push(list[i])
if out.length <= n and out.length > 0
combinations.push(out)
permuations--
return combinations
这里你有一个用c#编写的该算法的惰性评估版本:
static bool nextCombination(int[] num, int n, int k)
{
bool finished, changed;
changed = finished = false;
if (k > 0)
{
for (int i = k - 1; !finished && !changed; i--)
{
if (num[i] < (n - 1) - (k - 1) + i)
{
num[i]++;
if (i < k - 1)
{
for (int j = i + 1; j < k; j++)
{
num[j] = num[j - 1] + 1;
}
}
changed = true;
}
finished = (i == 0);
}
}
return changed;
}
static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
{
T[] elem = elements.ToArray();
int size = elem.Length;
if (k <= size)
{
int[] numbers = new int[k];
for (int i = 0; i < k; i++)
{
numbers[i] = i;
}
do
{
yield return numbers.Select(n => elem[n]);
}
while (nextCombination(numbers, size, k));
}
}
及测试部分:
static void Main(string[] args)
{
int k = 3;
var t = new[] { "dog", "cat", "mouse", "zebra"};
foreach (IEnumerable<string> i in Combinations(t, k))
{
Console.WriteLine(string.Join(",", i));
}
}
希望这对你有帮助!
另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。
private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
return true;
if (num[k - 1] + 1 == n)
return false;
++num[k - 1];
for (int i = 0; i < k - 1; ++i)
num[i] = i;
return true;
}
例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
但如果你跑
int[] nums = new int[k];
for (int i = 0; i < k; ++i)
nums[i] = i;
do
{
Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));
你会得到这个(为了清晰起见,我添加了空行):
0 1 2
0 1 3
0 2 3
1 2 3
0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4
它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。