我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
不需要进行集合操作。这个问题几乎和循环K个嵌套循环一样,但你必须小心索引和边界(忽略Java和OOP的东西):
public class CombinationsGen {
private final int n;
private final int k;
private int[] buf;
public CombinationsGen(int n, int k) {
this.n = n;
this.k = k;
}
public void combine(Consumer<int[]> consumer) {
buf = new int[k];
rec(0, 0, consumer);
}
private void rec(int index, int next, Consumer<int[]> consumer) {
int max = n - index;
if (index == k - 1) {
for (int i = 0; i < max && next < n; i++) {
buf[index] = next;
next++;
consumer.accept(buf);
}
} else {
for (int i = 0; i < max && next + index < n; i++) {
buf[index] = next;
next++;
rec(index + 1, next, consumer);
}
}
}
}
像这样使用:
CombinationsGen gen = new CombinationsGen(5, 2);
AtomicInteger total = new AtomicInteger();
gen.combine(arr -> {
System.out.println(Arrays.toString(arr));
total.incrementAndGet();
});
System.out.println(total);
获得预期的结果:
[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
10
最后,将索引映射到您可能拥有的任何数据集。
其他回答
简短的python代码,产生索引位置
def yield_combos(n,k):
# n is set size, k is combo size
i = 0
a = [0]*k
while i > -1:
for j in range(i+1, k):
a[j] = a[j-1]+1
i=j
yield a
while a[i] == i + n - k:
i -= 1
a[i] += 1
下面的递归算法从有序集中选取所有k元素组合:
选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。
对集合中的每一个i进行上述迭代。
为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。
Haskell中的简单递归算法
import Data.List
combinations 0 lst = [[]]
combinations n lst = do
(x:xs) <- tails lst
rest <- combinations (n-1) xs
return $ x : rest
我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。
对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。
Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。
> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]
当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。
> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
"abcdefgo","abcdefgp","abcdefgq"]
为此,我在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
下面是一个例子来说明用法:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
结果:
Word
----
AB
AC
AD
BC
BD
CD
(6 row(s) affected)
像Andrea Ambu一样用Python写的,但不是硬编码来选择三个。
def combinations(list, k):
"""Choose combinations of list, choosing k elements(no repeats)"""
if len(list) < k:
return []
else:
seq = [i for i in range(k)]
while seq:
print [list[index] for index in seq]
seq = get_next_combination(len(list), k, seq)
def get_next_combination(num_elements, k, seq):
index_to_move = find_index_to_move(num_elements, seq)
if index_to_move == None:
return None
else:
seq[index_to_move] += 1
#for every element past this sequence, move it down
for i, elem in enumerate(seq[(index_to_move+1):]):
seq[i + 1 + index_to_move] = seq[index_to_move] + i + 1
return seq
def find_index_to_move(num_elements, seq):
"""Tells which index should be moved"""
for rev_index, elem in enumerate(reversed(seq)):
if elem < (num_elements - rev_index - 1):
return len(seq) - rev_index - 1
return None