我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

简短的java解决方案:

import java.util.Arrays;

public class Combination {
    public static void main(String[] args){
        String[] arr = {"A","B","C","D","E","F"};
        combinations2(arr, 3, 0, new String[3]);
    }

    static void combinations2(String[] arr, int len, int startPosition, String[] result){
        if (len == 0){
            System.out.println(Arrays.toString(result));
            return;
        }       
        for (int i = startPosition; i <= arr.length-len; i++){
            result[result.length - len] = arr[i];
            combinations2(arr, len-1, i+1, result);
        }
    }       
}

结果将是

[A, B, C]
[A, B, D]
[A, B, E]
[A, B, F]
[A, C, D]
[A, C, E]
[A, C, F]
[A, D, E]
[A, D, F]
[A, E, F]
[B, C, D]
[B, C, E]
[B, C, F]
[B, D, E]
[B, D, F]
[B, E, F]
[C, D, E]
[C, D, F]
[C, E, F]
[D, E, F]

其他回答

这是我用c++写的命题

我尽可能少地限制迭代器类型,所以这个解决方案假设只有前向迭代器,它可以是const_iterator。这应该适用于任何标准容器。在参数没有意义的情况下,它抛出std:: invalid_argument

#include <vector>
#include <stdexcept>

template <typename Fci> // Fci - forward const iterator
std::vector<std::vector<Fci> >
enumerate_combinations(Fci begin, Fci end, unsigned int combination_size)
{
    if(begin == end && combination_size > 0u)
        throw std::invalid_argument("empty set and positive combination size!");
    std::vector<std::vector<Fci> > result; // empty set of combinations
    if(combination_size == 0u) return result; // there is exactly one combination of
                                              // size 0 - emty set
    std::vector<Fci> current_combination;
    current_combination.reserve(combination_size + 1u); // I reserve one aditional slot
                                                        // in my vector to store
                                                        // the end sentinel there.
                                                        // The code is cleaner thanks to that
    for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin)
    {
        current_combination.push_back(begin); // Construction of the first combination
    }
    // Since I assume the itarators support only incrementing, I have to iterate over
    // the set to get its size, which is expensive. Here I had to itrate anyway to  
    // produce the first cobination, so I use the loop to also check the size.
    if(current_combination.size() < combination_size)
        throw std::invalid_argument("combination size > set size!");
    result.push_back(current_combination); // Store the first combination in the results set
    current_combination.push_back(end); // Here I add mentioned earlier sentinel to
                                        // simplyfy rest of the code. If I did it 
                                        // earlier, previous statement would get ugly.
    while(true)
    {
        unsigned int i = combination_size;
        Fci tmp;                            // Thanks to the sentinel I can find first
        do                                  // iterator to change, simply by scaning
        {                                   // from right to left and looking for the
            tmp = current_combination[--i]; // first "bubble". The fact, that it's 
            ++tmp;                          // a forward iterator makes it ugly but I
        }                                   // can't help it.
        while(i > 0u && tmp == current_combination[i + 1u]);

        // Here is probably my most obfuscated expression.
        // Loop above looks for a "bubble". If there is no "bubble", that means, that
        // current_combination is the last combination, Expression in the if statement
        // below evaluates to true and the function exits returning result.
        // If the "bubble" is found however, the ststement below has a sideeffect of 
        // incrementing the first iterator to the left of the "bubble".
        if(++current_combination[i] == current_combination[i + 1u])
            return result;
        // Rest of the code sets posiotons of the rest of the iterstors
        // (if there are any), that are to the right of the incremented one,
        // to form next combination

        while(++i < combination_size)
        {
            current_combination[i] = current_combination[i - 1u];
            ++current_combination[i];
        }
        // Below is the ugly side of using the sentinel. Well it had to haave some 
        // disadvantage. Try without it.
        result.push_back(std::vector<Fci>(current_combination.begin(),
                                          current_combination.end() - 1));
    }
}

还有另一个递归解决方案(你应该能够使用字母而不是数字)使用堆栈,虽然比大多数更短:

stack = [] 
def choose(n,x):
   r(0,0,n+1,x)

def r(p, c, n,x):
   if x-c == 0:
      print stack
      return

   for i in range(p, n-(x-1)+c):
      stack.append(i)
      r(i+1,c+1,n,x)
      stack.pop()

4选3或者我想要从0到4的所有3种数字组合

choose(4,3) 

[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]

由于没有提到编程语言,我假设列表也是可以的。下面是一个OCaml版本,适用于短列表(非尾递归)。给定一个包含任意类型元素的列表l和一个整数n,如果我们假设结果列表中元素的顺序被忽略,它将返回一个包含l的n个元素的所有可能列表的列表,即list ['a';'b']与['b';'a']相同,并且将报告一次。因此,结果列表的大小将是((list。长度l)选择n)。

递归的直观原理如下:取列表的头,然后进行两次递归调用:

递归调用1 (RC1):到列表的尾部,但选择n-1个元素 递归调用2 (RC2):到列表的尾部,但选择n个元素

要组合递归结果,list-乘(请使用奇数名称)列表的头部与RC1的结果,然后附加(@)RC2的结果。List-multiply是如下操作lmul:

a lmul [ l1 ; l2 ; l3] = [a::l1 ; a::l2 ; a::l3]

Lmul在下面的代码中实现

List.map (fun x -> h::x)

当列表的大小等于您想要选择的元素数量时,递归将终止,在这种情况下,您只需返回列表本身。

下面是OCaml中实现上述算法的四行代码:

    let rec choose l n = match l, (List.length l) with                                 
    | _, lsize  when n==lsize  -> [l]                                
    | h::t, _ -> (List.map (fun x-> h::x) (choose t (n-1))) @ (choose t n)   
    | [], _ -> []    

这是我对javascript的贡献(没有递归)

set = ["q0", "q1", "q2", "q3"]
collector = []


function comb(num) {
  results = []
  one_comb = []
  for (i = set.length - 1; i >= 0; --i) {
    tmp = Math.pow(2, i)
    quotient = parseInt(num / tmp)
    results.push(quotient)
    num = num % tmp
  }
  k = 0
  for (i = 0; i < results.length; ++i)
    if (results[i]) {
      ++k
      one_comb.push(set[i])
    }
  if (collector[k] == undefined)
    collector[k] = []
  collector[k].push(one_comb)
}


sum = 0
for (i = 0; i < set.length; ++i)
  sum += Math.pow(2, i)
 for (ii = sum; ii > 0; --ii)
  comb(ii)
 cnt = 0
for (i = 1; i < collector.length; ++i) {
  n = 0
  for (j = 0; j < collector[i].length; ++j)
    document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
  document.write("<hr>")
}   

这是一个为nCk生成组合的递归程序。假设集合中的元素从1到n

#include<stdio.h>
#include<stdlib.h>

int nCk(int n,int loopno,int ini,int *a,int k)
{
    static int count=0;
    int i;
    loopno--;
    if(loopno<0)
    {
        a[k-1]=ini;
        for(i=0;i<k;i++)
        {
            printf("%d,",a[i]);
        }
        printf("\n");
        count++;
        return 0;
    }
    for(i=ini;i<=n-loopno-1;i++)
    {
        a[k-1-loopno]=i+1;
        nCk(n,loopno,i+1,a,k);
    }
    if(ini==0)
    return count;
    else
    return 0;
}

void main()
{
    int n,k,*a,count;
    printf("Enter the value of n and k\n");
    scanf("%d %d",&n,&k);
    a=(int*)malloc(k*sizeof(int));
    count=nCk(n,k,0,a,k);
    printf("No of combinations=%d\n",count);
}