我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

这是一个为nCk生成组合的递归程序。假设集合中的元素从1到n

#include<stdio.h>
#include<stdlib.h>

int nCk(int n,int loopno,int ini,int *a,int k)
{
    static int count=0;
    int i;
    loopno--;
    if(loopno<0)
    {
        a[k-1]=ini;
        for(i=0;i<k;i++)
        {
            printf("%d,",a[i]);
        }
        printf("\n");
        count++;
        return 0;
    }
    for(i=ini;i<=n-loopno-1;i++)
    {
        a[k-1-loopno]=i+1;
        nCk(n,loopno,i+1,a,k);
    }
    if(ini==0)
    return count;
    else
    return 0;
}

void main()
{
    int n,k,*a,count;
    printf("Enter the value of n and k\n");
    scanf("%d %d",&n,&k);
    a=(int*)malloc(k*sizeof(int));
    count=nCk(n,k,0,a,k);
    printf("No of combinations=%d\n",count);
}

其他回答

下面是一个使用宏的Lisp方法。这适用于Common Lisp,也适用于其他Lisp方言。

下面的代码创建了'n'个嵌套循环,并为列表lst中的'n'个元素的每个组合执行任意代码块(存储在body变量中)。变量var指向一个包含用于循环的变量的列表。

(defmacro do-combinations ((var lst num) &body body)
  (loop with syms = (loop repeat num collect (gensym))
        for i on syms
        for k = `(loop for ,(car i) on (cdr ,(cadr i))
                         do (let ((,var (list ,@(reverse syms)))) (progn ,@body)))
                then `(loop for ,(car i) on ,(if (cadr i) `(cdr ,(cadr i)) lst) do ,k)
        finally (return k)))

让我们看看…

(macroexpand-1 '(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p))))

(LOOP FOR #:G3217 ON '(1 2 3 4 5 6 7) DO
 (LOOP FOR #:G3216 ON (CDR #:G3217) DO
  (LOOP FOR #:G3215 ON (CDR #:G3216) DO
   (LOOP FOR #:G3214 ON (CDR #:G3215) DO
    (LET ((P (LIST #:G3217 #:G3216 #:G3215 #:G3214)))
     (PROGN (PPRINT (MAPCAR #'CAR P))))))))

(do-combinations (p '(1 2 3 4 5 6 7) 4) (pprint (mapcar #'car p)))

(1 2 3 4)
(1 2 3 5)
(1 2 3 6)
...

由于默认情况下不存储组合,因此存储空间保持在最小值。选择主体代码而不是存储所有结果的可能性也提供了更大的灵活性。

Here's some simple code that prints all the C(n,m) combinations. It works by initializing and moving a set of array indices that point to next valid combination. The indices are initialized to point to the lowest m indices (lexicographically the smallest combination). Then on, starting with the m-th index, we try to move the indices forward. if an index has reached its limit, we try the previous index (all the way down to index 1). If we can move an index forward, then we reset all greater indices.

m=(rand()%n)+1; // m will vary from 1 to n

for (i=0;i<n;i++) a[i]=i+1;

// we want to print all possible C(n,m) combinations of selecting m objects out of n
printf("Printing C(%d,%d) possible combinations ...\n", n,m);

// This is an adhoc algo that keeps m pointers to the next valid combination
for (i=0;i<m;i++) p[i]=i; // the p[.] contain indices to the a vector whose elements constitute next combination

done=false;
while (!done)
{
    // print combination
    for (i=0;i<m;i++) printf("%2d ", a[p[i]]);
    printf("\n");

    // update combination
    // method: start with p[m-1]. try to increment it. if it is already at the end, then try moving p[m-2] ahead.
    // if this is possible, then reset p[m-1] to 1 more than (the new) p[m-2].
    // if p[m-2] can not also be moved, then try p[m-3]. move that ahead. then reset p[m-2] and p[m-1].
    // repeat all the way down to p[0]. if p[0] can not also be moved, then we have generated all combinations.
    j=m-1;
    i=1;
    move_found=false;
    while ((j>=0) && !move_found)
    {
        if (p[j]<(n-i)) 
        {
            move_found=true;
            p[j]++; // point p[j] to next index
            for (k=j+1;k<m;k++)
            {
                p[k]=p[j]+(k-j);
            }
        }
        else
        {
            j--;
            i++;
        }
    }
    if (!move_found) done=true;
}

下面的递归算法从有序集中选取所有k元素组合:

选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。

对集合中的每一个i进行上述迭代。

为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。

简短的java解决方案:

import java.util.Arrays;

public class Combination {
    public static void main(String[] args){
        String[] arr = {"A","B","C","D","E","F"};
        combinations2(arr, 3, 0, new String[3]);
    }

    static void combinations2(String[] arr, int len, int startPosition, String[] result){
        if (len == 0){
            System.out.println(Arrays.toString(result));
            return;
        }       
        for (int i = startPosition; i <= arr.length-len; i++){
            result[result.length - len] = arr[i];
            combinations2(arr, len-1, i+1, result);
        }
    }       
}

结果将是

[A, B, C]
[A, B, D]
[A, B, E]
[A, B, F]
[A, C, D]
[A, C, E]
[A, C, F]
[A, D, E]
[A, D, F]
[A, E, F]
[B, C, D]
[B, C, E]
[B, C, F]
[B, D, E]
[B, D, F]
[B, E, F]
[C, D, E]
[C, D, F]
[C, E, F]
[D, E, F]